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ABSTRACT 

 

 

 

APPLICATION OF TRANSITION PROBABILITY GEOSTATISTICS FOR 

INDICATOR SIMULATIONS INVOLVING THE MODFLOW MODEL 

 

Justin R. Walker 

Department of Civil Engineering 

Master of Science 

 

This thesis describes a technique for utilizing the transition probability 

geostatistics method for stochastic simulations using the MODFLOW model.  Transition 

probability geostatistics has numerous advantages over traditional indicator Kriging 

methods including a simpler and more intuitive framework for interpreting geologic 

relationships and the ability to simulate juxtapositional tendencies such as fining upwards 

sequences.  The indicator arrays generated by the transition probability simulation can be 



converted into material identification arrays for use in the Layer Property Flow (LPF) 

package in MODFLOW 2000.  Furthermore, material sets can be used to assign three 

dimensional borehole data to a one-layer model.  The indicator arrays generated by the 

transition probability simulation can also be converted into layer elevation and thickness 

arrays for use with the new Hydrogeologic Unit Flow (HUF) package in MODFLOW 

2000.  This makes it possible to preserve complex heterogeneity while using reasonably 

sized grids.  A case study is presented illustrating all three types of applications on a real 

site in Texas. 
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1 INTRODUCTION 

Ground water model algorithms compute hydraulic heads corresponding to 

hydraulic properties like conductivity and transmissivity.  Typically, site investigations 

utilizing boreholes, ground penetrating radar, or other methods delineate the spatial 

distribution of hydraulic properties.  Unfortunately, site data commonly represent at best 

one percent of the actual study area.  Therefore, homogeneity is assumed to create 

polygonal zones with uniform hydraulic properties that are applied to the remainder of 

the study area.  However, soil properties like hydraulic conductivity can vary as much as 

two orders of magnitude within a ten-foot radius.  As a result, although overall regional 

aquifer behavior and analysis can be represented with uniform hydraulic properties, local 

conditions can deviate drastically from the model representation.  The impact of soil 

heterogeneity can be magnified by the presence of small lenses, which dominate flow 

conditions.  This situation can be significant when analyzing the transport of 

contaminants or when a local analysis requires precision and accuracy. 

One approach for dealing with model heterogeneity is stochastic simulations 

based on multiple equally plausible candidate realizations of the site heterogeneity.  

Ideally, such an approach would enable the generation of variability in subsurface soil 

stratigraphy based on interpretable geologic parameters such as lens width, material 

proportions, juxta-positioning tendencies and anisotropy.  Multiple realizations that 
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are conditioned to borehole data provide modelers with a rational approach for dealing 

with uncertainty associated with site characterization.  Stochastic simulations can be 

applied to regional representations of the aquifer behavior in addition to local scale 

simulations.  Stochastic simulations are particularly well-suited to local scale models 

since the resulting complex heterogeneity is more representative of actual stratigraphic 

deposition.  This heterogeneity makes realistic and potentially more accurate contaminant 

transport simulation possible by simulating the preferential flow channels resulting from 

thin lenses of clays, sands, or other materials.  The ultimate result of a stochastic 

approach is multiple simulations of hydraulic parameters that create a probabilistic 

solution.  Such a solution has more credence and provides a better understanding of 

actual site conditions. 

1.1 Indicator vs. Monte Carlo Approach 

 There are multiple methods of generating stochastic simulations of hydraulic 

parameters.  The most common methods are the indicator approach and the Monte Carlo 

approach.  The indicator approach operates on discrete parameters like geologic facies or 

material types.  Indicator geostatistics generates multiple distributions of material zones 

(each of which is called a “realization”) that have hydraulic characteristics assigned to 

each material.  This approach presumes that a relationship between geologic facies and 

hydraulic properties can be reasonably estimated.  An indicator approach is defensible 

because hydraulic parameters and geologic data are categorical. 

 The Monte Carlo approach involves the generation of variability in the hydraulic 
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properties associated with a pre-defined material distribution.  The variability for a 

simulation is created with a random number generator from a mean and standard 

deviation for the parameter being analyzed.  The random number generator can be 

designed such that the resulting parameters exhibit either a linear (purely random), 

normal, or log-normal distribution.  Each model instance is then generated by producing 

a random value for each of the selected parameters.  The model is then run once for each 

combination of parameter values.  The resulting multiple solutions can be used to assess 

the probability of some model outcome.  The greater the number of model runs, the 

greater the confidence in the results.  The Latin Hypercube approach is a variation on the 

Monte Carlo approach that ensures that the parameters values are combined in a fashion 

that allows for an equivalent confidence with fewer model runs. 

 The research described in this thesis utilizes the indicator approach.  The main 

advantage of the indicator approach over the Monte Carlo approach is that it is conducive 

to stochastic inverse modeling.  Stochastic inverse modeling involves using an automated 

parameter estimation engine such as PEST (Doherty, 2000) to optimize the parameter 

values associated with the material zones generated for each model instance.  The end 

result of this process is that each of the N model runs is calibrated to field observed heads 

and flows.  This provides a greater confidence in the probabilistic model predictions. 

Another advantage of the indicator geostatistics approach is that it allows for 

geologic interpretation.  A random number generator with only mathematical 

interpretation produces Monte Carlo realizations.  Conversely, indicator geostatistics 

functions on the existence of geologic depositional knowledge.  In addition, indicator 
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simulations can be conditioned to existing site data. 

1.2 Transition Probability Geostatistics 

 The transition probability approach of indicator geostatistics is a relatively new 

method for representing heterogeneity in 3-D soil stratigraphy.  Steven F. Carle and other 

researchers have demonstrated that this approach has some unique advantages over 

traditional indicator methods like cross-variograms.  The transition probability approach 

is rational and interpretable as well as mathematically efficient due to probability 

constraints.  Carle has developed a software package called T-PROGS that operates on 

the basis of transition probabilities (Carle, 1999).  The research in this thesis utilizes the 

T-PROGS software and the groundwater modeling tools of the Department of Defense 

Groundwater Modeling System (GMS) to generate 3-D multiple realizations of soil 

heterogeneity. 

1.3 The MODFLOW Model 

 MODFLOW (Harbaugh, 2000) is the most widely used groundwater model.  

MODFLOW is a 3D saturated flow model that can be used for steady state or transient 

simulations and it can represent a variety of sources and sinks.  Since it is a saturated 

flow code, it is a relatively efficient model.  Model runs generally converge rapidly and 

model instability is rare.  This makes MODFLOW an ideal candidate for stochastic 

simulations where a large number of runs are required. 

1.4 Overview of Research 
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The objective of my research was to link transition probability geostatistics with 

the MODFLOW model for stochastic simulations.  This research has resulted in the 

development of two new algorithms for building MODFLOW-compatible datasets from 

indicator arrays generated by transition probability geostatistics.  Both tools operate with 

the aid of the T-PROGS software developed by Steven Carle.  The first tool enables the 

generation of multiple realizations of HUF data, which can be incorporated into the new 

HUF package in MODFLOW (Anderman, 2000).  The second tool condenses three-

dimensional borehole data into a two-dimensional MODFLOW grid based on the 

dominant material in each borehole data.  It then generates stochastic two-dimensional 

realizations of material types that honor the borehole data. 

In the remainder of this thesis, I will first discuss the theory behind the transition 

probability approach of indicator geostatistics and Steven Carle’s software package, T-

PROGS.  Next, I will describe the interface that enables the implementation of the T-

PROGS algorithm inside GMS.  Thirdly, the two new tools of stochastic HUF arrays and 

2D material sets will be outlined.  Last, sample applications of these two new tools will 

be described. 
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2 LITERATURE REVIEW 

Various methods exist to generate stochastic realizations of subsurface 

stratigraphy.  Stochastic simulation involves generating alternate, equally probable, high-

resolution models of the spatial distribution of aquifer zones.  A simulation is considered 

“conditioned” if the resulting realization honors known data values at their respective 

locations.  Methods of generating stochastic simulations were reviewed in order to 

determine what methodology would be most effective and compatible with MODFLOW 

simulations.  These methods can be grouped into five general types: Normal processes, 

Indicator-Based Algorithms, p-Field Simulation Algorithms, Boolean Algorithms, and 

Simulated Annealing (Deutsch, 1998).  In addition, Kriging algorithms will be reviewed.   

2.1 Normal Processes 

 Normal, or Gaussian-related, methods are the algorithms of choice for most 

continuous random variables.  Gaussian random function models are unique because of 

their analytical simplicity.  The basis of normal processes is the Central Limit Theorem.  

Normal processes are particularly useful because many natural systems can be modeled 

with random variables that are approximately normally distributed.  A stochastic process 

{ }T∈ttX ),(  is said to be normal if for any integer n and any subset { }nz ttt ,...,, 2  of T n 

random variables )(),...( ntXtX are jointly normally distributed (Parzen, 1964).  
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HMMM..  THIS STILL LEAVES SOMETHING TO BE DESIRED. 

2.2 p-Field Simulation 

 In contrast to sequential simulation methods, which condition to the original data 

as well as previously simulated values, p-Field simulation condition only to the original 

data.  As a result, conditional cumulative distribution functions need only be calculated 

once instead of iteratively calculated for each realization.  This advantage streamlines 

time requirements, which, is one of the advantages of the p-Field method.  The 

conditional cumulative distribution functions (ccdf’s) can be obtained through multi-

Gaussian Kriging of the z continuous data or through indicator Kriging performed on 

indicator data. 

2.3 Boolean Algorithms 

 Boolean algorithms cover a large range of categorical simulation algorithms.  

Boolean processes are generated by the distribution of geometric objects in space 

according to some probability laws.  The major problem with geologic application of 

Boolean algorithms is that geological lithofacies are rarely a simple parametric shape.  

Furthermore, they are rarely distributed uniformly within a study area.  As a result, the 

determination of a Boolean model is a trial-and-error process until the final stochastic 

image is visually satisfactory to the modeler.  Calibration of the Boolean model is also a 

matter of art rather than statistical inference.  Hence, Boolean methods are usually 

custom-built. 
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2.4 Simulated Annealing 

 Simulated annealing is a relatively new approach that is capable of generating 

conditional stochastic images of continuous or categorical variables.  The basic idea of 

simulated annealing is to iteratively perturb an initial image until it satisfies predefined 

characteristics included in an objective function.  The objective function is minimized 

during the perturbations.  If the perturbation improves the objection function, it is 

accepted.  However, some negative perturbations are accepted to avoid local minimums. 

 Simulated annealing can be CPU-intensive if the quality of the perturbation 

cannot be determined accurately and quickly.  The key to this technique is to quickly and 

accurately ascertain the quality of the image between perturbations.  A popular 

application of simulated annealing is to improve an initial stochastic image generated 

with a Gaussian or indicator algorithm.  An initial configuration can be determined 

during the simulated annealing process by assigning the conditioning data to the nearest 

grid nodes and then assigning the remaining nodes randomly from the user-specified 

histogram. 

2.5 Kriging 

 Kriging is the fundamental mathematical algorithm employed by many stochastic 

simulator processes.  A concept integral to geostatistics and Kriging is a regionalized 

variable.  In contrast to random variables, regionalized variables have continuity from 

point to point, but the correlation is so complex that is cannot be described by any 

mathematical function.  Therefore, spatial correlations for regional variables must be 
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drawn over short distances.  Regionalized variables typically describe natural phenomena 

that have geographic distributions like depositional tendencies.  Geostatistics is the 

estimation of the form of a regionalized variable in one, two, or three dimensions 

(Statistics and Data Analysis in Geology, Davis, 1986).  The spatial continuity of a 

regional variable can be measured by a variogram, which is a plot of semivariances 

hγ given by 

∑ −
+−= hn

i hiih nXX 2/)( 2γ .................................................................... Eqt. 2.2 

where iX is a measurement of a regionalized variable taken at a location i, hiX +  is 

another measurement taken h intervals away, and n is the number of points.  If sample of 

the data have been taken and the form of the variogram is known, it is possible to 

estimate the unsampled points anywhere along the surface.  This estimating process is 

called Kriging.  Unlike most interpolation algorithms, Kriging establishes a measure of 

the error or uncertainty of a estimated surface.  Traditionally, Kriging is used to provide 

estimates for unsampled locations that minimize the error variance at these locations.  

However recently, Kriging has been utilized to build probabilistic models of uncertainty 

about these unknown locations.  The Kriging principle has been presented in numerous 

papers and books (GSLIB Geostatistical Software Library and User’s Guide, Deutsch, 

1998).  There are several variations of Kriging.  I will address five of the approaches: 

simple Kriging (SK), ordinary Kriging (OK), Kriging with various trend models (KT), 

coKriging, and indicator Kriging (IK). 

2.5.1 Simple Kriging 
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 The simple Kriging estimator is defined as 

[ ] [ ]∑ −=− )()()()()(*
αααλ uuuuu mZmZ SK .............................................. Eqt. 2.3 

where )(uZ is the random variable model at location u, the αu ’s are the n data locations, 

{ })()( uu ZEm =  is the location-dependent expected value of the random value )(uZ , the 

αλ  are the weights, and )(* uSKZ is the linear regression estimator, also called the “simple 

Kriging” estimator.  Simple Kriging does not adapt well to local trends because it 

assumes that the mean remains constant. 

2.5.2 Ordinary Kriging 

 Indicator random functions are binary and are therefore ideally suited for 

simulating categorical variables.  The binary indicator variable is set to 1 if a certain 

category is present at a given location, or 0 if not.  The ordinary Kriging estimator is 

given by  

∑
=

=
n

OK
OK ZZ

1

)(* )()()(
α

ααλ uuu ...................................................................... Eqt. 2.4 

where )()( uOK
αλ ’s are the ordinary Kriging weights.  Ordinary Kriging is more conducive 

to local trends because it allows for a location-dependent mean.  Therefore, it is the 

algorithm of choice for geostatistics. 

2.5.3 Trend Model Kriging 

 Kriging with a trend, or “universal” Kriging, allows for the mean to vary 
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according to a particular trend given by  

∑
=

=
n

KT
KT ZZ

1

)(* )()()(
α

ααλ uuu ....................................................................... Eqt. 2.5 

where )()( uKT
αλ ’s are the Kriging trend weights.  Forms of Kriging with a trend are 

Kriging with an external drift, Bayesian Kriging, and factorial Kriging. 

2.5.4 CoKriging 

 While Kriging is traditionally linear regression using data on the same attribute as 

that being estimated, cokriging is linear regression that also uses data defined on different 

attributes.  For example, cokriging could be applied to hydraulic conductivity as the 

primary sample, and porosity (which can be related to hydraulic conductivity) as the 

secondary sample.  The ordinary cokriging estimator of Z(u) is 

∑∑
==

+=
21

12

'
2

'
2

11
1

* )()()()()(
nn

qCOK YZZ
α

αα
α

αα λλ uuuuu ......................................... Eqt. 2.6 

where the 1αλ ’s are the weights applied to the zn1  samples and the '
1αλ ’s are the weights 

applied to the yn2  samples. 

2.5.5 Indicator Kriging 

 An indicator is a random variable that represents a discrete category at a given 

location.   Indicator variables are mutually exclusive and are defined over a region D by  







=
x

x
locationatoccurskcategoryif,1

otherwise 0,
)(Ik ....................... Eqt. 2.7 
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where Dx   ∈ and category k = 1,…,K.  An indicator approach is fundamentally different 

than a continuous variable approach.  A continuous random variable can assume any 

value within a given range.  A geologic example of a continuous variable is hydraulic 

conductivity.  The hydraulic conductivity at a given location can have any value inside 

some rational range. Indicator Kriging produces a least-square estimate of the conditional 

cumulative distribution function (ccdf) at cutoff kz : 

[ ] { }
[ ] { })(|)(Pr);(

)(|;();(
**

**

nzZobzi

nzIEzi

kk

kk

≤=

=

uu
uu

........................................................... Eqt. 2.8 

where )(n represents the conditioning information available in the neighborhood of 

location u.  The indicator Kriging process is repeated for a series of K cutoff values 

,,...,1, Kkzk = which discretize the interval of variability of the continuous attribute z 

(Deutsch, 1998).  The conditional cumulative distribution function represents a 

probabilistic model of uncertainty for the unsampled value z(u).  If z(u) is categorical, 

then the direct Kriging of z(u) provides a model for the probability that z(u) is equal to 

one, or in other words that a particular category prevails at that location u.  If z(u) is 

continuous, then the selection of the cutoff values, kz  becomes important.  Too many 

cutoff values produce computational inefficiency.  Too few cutoff values result in the loss 

of detail in the model. 

One type of indicator Kriging uses a transition probability approach. The 

transition probability method is a modified form of indicator Kriging. The transition 

probability approach couples geologic knowledge and mathematical manipulations to 
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overcome many of the shortcomings of the traditional indicator geostatistical methods.  

Conceptually, the transition probability approach assumes that the future depends entirely 

on the present, not the past.  When applying it to spatial distribution terms, the time lag is 

replaced with a distance lag and the local occurrence of a category is entirely dependent 

on the nearest occurrence of another or the same category.  Mathematically, the transition 

probability )( φht jk  is given by 

)}(|)Pr{()( xx atoccursjcategoryhatoccurskcategogryht jk φφ += Eqt. 2.9 

where φh represents a positive lag separation in the direction φ .  The transition 

probability approach is gaining popularity in geologic applications because it is intuitive 

and mathematically efficient. 

The transition probability approach to indicator geostatistics was incorporated 

into the research described in this thesis.  Certain characteristics made it the method of 

choice.  First, the indicator approach is conducive to geologic applications because 

hydrogeology can be categorized into discrete geologic facies.  Transition probabilities 

can account for asymmetric juxtapositional tendencies like fining-upwards, which are 

typical in deposition patterns.  Furthermore, the transition probability approach provides 

a conceptual framework to incorporate geologic knowledge such as mean lengths, 

material proportions, anisotropy, and juxtapositioning.  The transition probability 

approach helps incorporate geologic interpretation into the development of Markov chain 

models of spatial variability, providing means for quantifying subjective insights on 

spatial variability that a geologist might otherwise infuse directly into a hand-drawn 
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geologic cross-section.  A main advantage of the transition probability indicator approach 

is that it is conducive to stochastic inverse modeling.  Stochastic inverse modeling 

involves using an automated parameter estimation engine such as PEST (Doherty, 2000) 

to optimize the parameter values associated with the material zones generated for each 

model instance.  The end result of this process is that each of the N model runs is 

calibrated to field observed heads and flows.  This provides a greater confidence in the 

probabilistic model predictions. 
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3 TRANSITION PROBABILITY GEOSTATISTICS 

The research described in this thesis is based upon the transition probability 

geostatistics approach for generating multiple realizations of model heterogeneity for use 

in indicator based stochastic simulations.  The transition probability method is a modified 

form of indicator Kriging, but it has several advantages over traditional indicator Kriging.  

First, traditional indicator geostatistics does not provide consideration for asymmetric 

tendencies because indicator cross-variograms inherently assume symmetry.  Asymmetry 

implies that 

)()( hphp mkmk −≠ .................................................................................... Eqt. 3.1 

or 

)()( hphp kmmk ≠ ...................................................................................... Eqt. 3.2 

where mkp  denotes the joint probability and h  denotes a lag separation vector.  The 

cross-variograms )(hmkγ uses an averaging technique illustrated by  

2/)]()([)0()( hphpph mkmkmkmk −+−=γ ................................................ Eqt. 3.3 

Therefore, any asymmetry such as fining upwards is lost.   Second, traditional indicator 

geostatistics does not have a conceptual framework for incorporating geologic 

interpretations into the development of cross-correlated spatial variability.  Third, 
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traditional indicator geostatistics lack the ability to consider local variable anisotropy 

directions like radial morphology of alluvial fans or meandering of fluvial depositional 

units and structure resulting from deformation (Carle, 1998).  Furthermore, traditional 

models of spatial variability are generated by empirical curve fitting a sample indicator 

(cross-) variogram with a mathematical function such as a spherical or exponential model 

(Carle, 1996).  However, geologic data is typically only adequate to develop a variogram 

in the vertical direction.  The scarcity of site data makes curve fitting impractical in the 

strike and dip direction.  It is not uncommon to be unable to generate a realistic 

variogram even in the vertical direction.   

The transition probability approach couples geologic knowledge and 

mathematical manipulations to overcome many of the shortcomings of the traditional 

indicator geostatistical methods.   First, transition probabilities can account for 

asymmetric juxtapositional tendencies like fining-upwards.  Furthermore, the transition 

probability approach provides the conceptual framework to incorporate geologic 

knowledge such as mean lengths, material proportions, anisotropy, and juxtapositioning.  

The transition probability approach helps incorporate geologic interpretation into the 

development of Markov chain models of spatial variability, providing means for 

quantifying subjective insights on spatial variability that a geologist might otherwise 

infuse directly into a hand-drawn geologic cross-section.  The remainder of the chapter 

will outline the transition probability approach as developed by Steven F. Carle as 

described in various publications including Carle (1996), Carle (1999), Carle et al (1998), 

Carle & Graham (1995), Carle & Graham (1997). 
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3.1 Markov Chains 

 Conceptually, when applied to time, a 1-D Markov chain assumes that the future 

depends entirely on the present, not the past.  When applying it to spatial distribution, 

time is replaced with a distance lag and the local occurrence of a category is entirely 

dependent on the nearest occurrence of another or the same category.  “Mathematically, a 

continuous Markov chain is a transition probability model described by a matrix 

exponential function, which provides a solution to a first-order stochastic differential 

equation.” (Carle, 1996)  The 1-D transition probability matrix )( φhT  has the following 

definition: 

)exp()( φφφ hRhT = ................................................................................... Eqt. 3.4 

where  

=)( φhT
















)()(

)()(
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htht

htht

KKK
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L
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Each matrix entry )( φht jk is defined by 

)}(|)Pr{()( xx atoccursjcategoryhatoccurskcategogryht jk φφ += Eqt. 3.5 

where φh represents a positive lag separation in the direction φ .  φR is a transition rate 

matrix 
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and will be described later in the text.  Markov chains can be used to represent random 

systems of spatial variability as well as structured systems of spatial variability.  Markov 

chains have found most of their application in one-dimensional systems.  However, one-

dimensional Markov chains can be extended to three dimensions by manipulation of one-

dimensional Markov chains in the three primary directions: strike, dip, and vertical.  The 

resulting 3-D Markov chain models can then be applied to indicator estimation and 

simulation techniques like indicator cokriging, sequential indicator simulation, and 

simulated annealing.  Markov chains can be defined by a matrix of transition rates that 

delineate the probability of changing from one category to another based on a lag 

distance.  These transition rate matrices have uniquely simple properties that enhance 

their usefulness.  First, indicator variables are mutually exclusive, such as geologic units, 

and are defined over a region D by  







=
x

x
locationatoccurskcategoryif,1

otherwise 0,
)(Ik .................... Eqt. 3.6 

where Dx   ∈ and category k = 1,…,K.  According to probability rules, the proportions of 

each geologic unit obey 

∑
=

=
K

k
kp

1
1 .................................................................................................. Eqt. 3.7 

The row sums in )( φhT  obey 
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jht
K

k
jk ∀=∑

=1
1)( φ ................................................................................ Eqt. 3.8 

The columns sums obey  

∑
=

∀=
K

k
jkj kphtp

1
)( φ ......................................................................... Eqt. 3.9 

where 

kjht jk ,1)(0 ∀≤≤ φ ......................................................................... Eqt. 3.10 

3.2 Options for Creating Markov Chains 

 I will discuss four alternatives for generating the Markov chains fundamental to 

the transition probability approach: definition of transition rates, embedded transition 

probabilities, embedded transition frequencies, and maximum entropy factors.  

3.2.1 Rates 

First, Markov chains can be defined by simply defining the matrix of transition 

rates.  An N by N matrix of transition rates is required to define the Markov chains for a 

model of variability with N geologic units.  A transition rate is defined as: 

kj
h

t
r jk

jk ,
)0(

, ∀
∂

∂
=

φ
φ ......................................................................... Eqt. 3.11 

Mathematical manipulations of the transition rates are accomplished in matrix form: 











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Conceptually, the transition rate describes the change in the transition probability over 

the change in lag distance.  The diagonal terms of the transition rate matrix are defined 

as: 

φ
φ

,
,

1

k
kk L

r −= .......................................................................................... Eqt. 3.12 

where φ,kL  is the average mean length of material k in the direction φ . 

The row sums of φR must obey 

jr
K

k
jk ∀=∑

=1
, 0φ ................................................................................. Eqt. 3.13 

The column sums obey  

∑
=

∀=
K

j
jkj krp

1
, 0φ ............................................................................ Eqt. 3.14 

The application of these two constraints eliminates the need to define the row and column 

transition rates for one entire category in the system.  This category will be referred to in 

the remainder of the paper as the background category and will receive attention later in 

the report.  The transition probabilities for each geologic unit with respect to each other 

can be directly calculated from the transition rate matrix and visa versa.  An example 

transition rate matrix developed for a site near the southwest portion of the Lawrence 

Livermore National Laboratory (LLNL) in the Livermore Valley of the Coast Range in 

California is 



 21

1

806.0766.0000.0040.0
123.0227.1080.1024.0
209.0150.0447.0088.0
064.0104.0706.0875.0

−



















−
−

−
−

= mRz . 

The site is an alluvial fan deposit with a large proportion of fine-grained materials.  The 

site is composed of the materials listed in Table 3.1. 

Table 3.1 LLNL site characterization from core data (Carle, 1996). 

# facies texture % 
Avg. vertical 

lens length 

1 Debris flow Poorly-sorted clay gravel 7 1.14 

2 Flood plain Clay and silt 56 2.24 

3 Levee Silty or clayey fine sand 19 0.82 

4 Channel 
Sand and gravel 

(rounded) 
18 1.24 

 

The average vertical lens length for each facie can be confirmed with Eqt. 3.12.  The 

correlating transition probability curves generated from this site data are represented in 

Figure 3.1.   
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Figure 3.1 Matrix of vertical-direction transition probabilities for LLNL core data: 
measurements (dots) and Markov chain model (solid lines).  Intersection of dashed line 
(tangent) with lag axis indicates mean length; dotted line indicates proportions (Carle, 
1996) 

This figure illustrates the unique characteristics and interpretability of the 

transition probability approach.  First, the intersection of the dashed line (tangent to the 

Markov chain at lag = 0) and the lag axis indicates the average vertical mean length of 

the corresponding geologic unit.  The dotted line indicates the proportion of each 

geologic unit.  The dotted curve indicates the actual measurements from the borehole 

data, and the solid line represents the Markov chain computed from the transition rates.  

Conceptually, we see a much greater probability of every material transitioning to flood 
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plain due to the high proportion of that material.  We also see a greater probability of 

debris flow transitioning to levee than levee transitioning to debris flow.  Similar 

comparisons can be made for each material. 

3.2.2 Embedded Transition Probabilities 

 Embedded transition probabilities provide a more interpretive method of defining 

the directional Markov chains.  Figure 3.2 illustrates embedded occurrences of geologic 

facies.   

 
Figure 3.2 Embedded occurrences of a three-category system with 1 = white, 2 = gray, 3 
= black. (Carle, 1999) 

 

Implementation of an embedded Markov chain analysis requires minor 
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computations on the borehole data.   

1. Forget about lag or spatial dependency and relative thickness of the beds. 

2. Record the succession of “embedded occurrences,” that is, simply log each 
occurrence of every geologic unit in borehole data, which might look something like 
ABCABACABCABABC. 

3. Tally up the transition count matrix, which for the succession above would be 

















−
−

−

03
32
15

 

The diagonal elements are blank because “self-transitions,” e.g. from category 1 to 
category 1, are unobservable.  That is, stacked beds of the same category are 
assumed not distinguishable from a single bed.  The “embedded occurrence” term 
refers to a discrete occurrence of category 1, which may consist of either a single bed 
or stacked bed. 

4. Divide each row by the row sum to obtain the embedded transition probabilities 

 


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













−
−

−

00.1
60.040.0

167.0833.0
 

 

5. Divide each entry by the total embedded occurrences in the matrix to obtain the 
transition probability frequency 

 











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



−
−

−

00.0214.0
214.0143.0
071.0357.0

 

 

 



 25

Once again, an N by N matrix of embedded transition probabilities is required in 

each primary direction.  Conceptually, an embedded transition probability describes the 

frequency of the occurrence of material A following material B in the borehole data or 

the marginal probability of material A occurring above material B.  

{ }belowoccursBmaterialaboveoccursAmaterialzBA |Pr, =π .. Eqt. 

3.15 

The embedded transition probabilities are independent of the actual length of occurrence 

of a given material.  And the off-diagonal entries of the embedded transition probability 

matrix satisfy 

∑
=

=
K

k
zjk

1
, 1π  ............................................................................................ Eqt. 3.16 

Once again, using the LLNL site with debris flow, floodplain, levee, and channel facies, 

an embedded transition probability matrix can be constructed as 



















−
−

−
−

=

896.0058.0045.0
128.0846.0026.0
434.0390.0176.0
073.0124.0803.0

zπ  

The embedded transition probability approach provides a more conceptual approach to 

generating transition probabilities because embedded occurrences can be easily tallied 

from the borehole data.  For example, zzzz and ,42,43,41,43 ππππ 〉〉〉〉 , which indicates 

that levee tends to occur above channel.  Once again, application of the probability 

properties excludes the need to define the row and column entries for the background 
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category. Embedded transition probabilities can easily be converted to transition rates 

with 

zj

zjk
zjk L

r
,

,
,

π
= ............................................................................................ Eqt. 3.17 

The transition probability curves associated with the embedded transition probabilities 

above are illustrated in Figure 3.3.  

 

Figure 3.3 Markov chain model fit to matrix transition probability data with the 
embedded transition probability (solid line) and the maximum entropy (dashed line) 
approaches. Actual measured data is illustrated with a dotted line. (Carle, 1999) 
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The embedded transition probability approach provides a conceptual and accurate method 

of generating 1-D Markov chains. 

3.2.3 Embedded Transition Frequencies 

 An embedded Markov chain analysis can also be performed based on embedded 

transition frequencies, which are defined as 

{ }belowoccursAmaterialandaboveoccursBmaterialf zAB Pr, = ...... Eqt. 3.18 

An embedded transition frequency matrix for the LLNL data can be formulated as 



















=

)2115.0(2031.0000.00085.0
0340.0)3395.0(2971.00085.0
1713.01264.0)3468.0(0672.0
0063.00101.00677.0)0841.0(

zF  

The diagonal terms of the matrix correspond to the marginal frequencies of embedded 

occurrence of category j such that: 

∑ ∑
≠ ≠

==
K

jk

K

jk
zkjzjkzj fff ,,, ......................................................................... Eqt. 3.19 

Similar to the proceeding methods, the probabilistic properties of the matrix make the 

definition of one row and column not required in the matrix.  Furthermore, transition 

frequencies can be converted to transition rates by: 

jk
Lf

f
r

zjzj

zjk
zjk ≠∀=

,,

,
, ..................................................................... Eqt. 3.20 

The transition probability curves using the embedded transition frequencies, zF , are 
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illustrated in Figure 3.4. 

 

Figure 3.4 Transition probability curves from measured data and Markov chain 
generated from embedded transition frequencies. 

3.2.4 “Independent” or “Maximum Entropy” (Disorder) Transition 

Frequencies 

 Geologic deposition typically presents some juxtapositional tendencies in the 

bedding sequence.  This order or disorder in a direction φcan be defined by entropy, 

φS ,of facie to facie transition frequency φ,jkf .  φS  is defined as: 

∑∑−=
J k

jkjk ffS φφφ ,, ln ....................................................................... Eqt. 3.21 
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However, consider an area that displays complete disorder in the bedding sequence. 





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










=

)2115.0(0888.01075.00152.0
0888.0)3396.0(2196.00311.0
1075.02196.0)3671.0(0377.0
0152.00311.00377.0)0841.0(

max)(S
zF  

Maximum disorder would be void of any juxtapositional tendencies and would only 

depend on mean lengths and proportions.  As a result, max)(S
zF is symmetric with the 

diagonal entries equal to the row/column off-diagonal totals or marginal frequencies.  By 

comparison to this case, one could determine to what extent a site exhibits juxtapositional 

tendencies.  For example, if an observed transition frequency zf ,43  is greater than 

max)(
,43
S

zf , then one might determine that there is a tendency for material 3 to occur above 

material 4.  One can develop a transition rate matrix from a maximum transition 

frequency matrix, max)(S
zF , with three steps.  First, one would determine the mean lengths 

and proportions for each geologic unit in the corresponding direction.  Second, one would 

compute the maximum entropy frequency matrix max)(S
zF .  Third, one would establish the 

off-diagonal transition rates relative to the maximum entropy transition rates max)(S
zR , 

which can be calculated from max)(S
zF  by 

∑
≠

=

jk

S
zjkzj

S
zjkS

zjk fL

f
r

max)(
,,

max)(
,max)(

, ......................................................................... Eqt. 3.22 

In practice, maximum entropy application involves maximum entropy coefficients.  

Markov chains are quantified with a mean length for the diagonal entries and a 
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coefficient equal to the actual transition rate divided by the maximum entropy transition 

rate.  These coefficients represent maximum entropy factors.   
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A maximum entropy factor of 1.0 displays maximum disorder in depositional tendencies.  

A factor greater than unity indicates that the two categories tend to occur next to each 

other.  A factor less than unity would infer the opposite.  The transition probability curves 

generated from max)(S
zR  are shown in Figure 3.5. 
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Figure 3.5  Transistion probability curves generated from measured data and maximum 
entropy factors. 

Two sets of transition probability curves were generated from two slightly different 

maximum entropy factor matrices to demonstrate the application of these factors.  The 

maximum entropy factors that are bolded and italicized in max)(S
zR were adjusted slightly 

as follows: 
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The transition probability curves for channel->floodplain and channel->levee in Figure 

3.6 display a slight change from their counterparts in Figure 3.5 due to the variation in the 

maximum entropy factors. 

 

Figure 3.6 Transition probability curves generated from measured data and maximum 
entropy Markov chains. 
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This concept is particularly useful in interpreting the juxtapositional tendencies of an 

existing site by comparing the actual transition rates with those produced with the 

maximum entropy method. 

3.3 Conceptual Development 

 One of the unique characteristics of the transition probability approach is the 

conceptual framework that enhances Markov chain development.  The conceptual 

framework of this approach refers to the ability to logically incorporate intuitive, 

geologic parameters such as mean length and proportion into this mathematical 

algorithm.  It is this characteristic that has elevated interest and sponsored further 

research.  Furthermore, this characteristic has made the transition probability approach 

more attractive than traditional indicator methods like cross-variograms because they 

require abundant data to enable curve-fitting.  The conceptual framework that the 

transition probability approach is built on enables users to generate relationships between 

different materials based on geologic features of the study site.  Some of these features 

include a background material, mean lens lengths, material proportions, asymmetry, 

juxtapositional tendencies, and 3-D Markov chains.   

3.3.1 Background Material 

 Application of the transition probability approach involves the designation of a 

background material.  The probabilistic constraints of the Markov chains make it 

unnecessary to quantify data for one category.  Not only is it unnecessary, but it is futile 
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to do so because values will be overwritten in order to satisfy constraints.  Conceptually, 

the background material can be described as the material that “fills” in the remaining 

areas not occupied by other units.  For example, in a fluvial depositional system, a 

floodplain unit would tend to occupy area not filled with higher-energy depositional units 

and would therefore be a logical choice for the background material.  The simplification 

of a background material can be illustrated with a three-unit system.  A nine-entry system 

reduces to a four-entry system with the application the second material as the background 

material. 


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b
bbb

b
 

Mathematically, any material could be selected as the background material. 

3.3.2 Material Proportions 

 Material proportions are quantified as the proportion of a given material at a 

particular site.  This site characteristic is integral in the transition probability approach.  

Graphically, the material proportions correlate to the sill on the transition probability 

curve as illustrated in Figure 3.1.  The plots in each column have approximately the same 

sill, which correlates to the proportion of the corresponding material.  As ∞→zh , the 

transition probability approaches the proportion. 

3.3.3 Mean Length 



 35

 Conceptually, the mean length, φ,kL  of the category k  in the direction φ  is 

defined as the total length of the category k  in direction φ  divided by the number of 

embedded occurrences.   

kofoccurencesembeddedofnumber
directioninkoflengthtotalLk

φ
φ =, ....................... Eqt. 3.23 

In other words, the mean length, φ,kL  corresponds to the “mean thickness” in any given 

direction.  Mathematically, φ,kL  relates to a diagonal transition probability )( φhtkk  by 

φφ ,

1)0(

k

kk

Lh
t

=
∂

∂
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 or 

 
φ

φ
,

,
1

k
kk L

r −= ......................................................................................... Eqt. 3.25 

As illustrated in Figure 3.1, the mean length will correspond to the slope of the transition 

probability curve at a 0=φh .  Mean lengths can be used in model development by 

establishing the diagonal terms of the rate matrix given the knowledge of material mean 

thickness.  Alternatively, one can interpret the mean length from the transition probability 

model. 

3.3.4 Asymmetry 

 One functional advantage of the transition probability approach over traditional 

approaches is the ability to model asymmetry.  Cross-variograms are inherently 
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symmetric such that )()( hh jkjk −=γγ  whereas transition probabilities allow for 

)()( htht jkjk −≠ .  This capability is particularly useful when modeling systems with 

vertical juxtapositional tendencies like fining-upward tendencies in fluvial deposits. 

3.3.5 Sparse or No Data 

 Typical data sets yield noisy transition probabilities, especially in the lateral 

directions.  The traditional indicator approaches that utilize empirical curve-fitting can be 

more complicated than the data warrants.  However, the transition probability approach 

addresses mathematical and probability theory while providing an interpretive framework 

for model development.  The transition probability approach is inherently simpler 

because it assumes that spatial variability depends only on the nearest location.  

Furthermore, in the absence of borehole data one can still develop Markov chains from 

basic geologic data: by estimating the proportion, mean length, and juxtapositional 

tendencies of the materials. 

 Markov chains are even conducive to the development of models without any data 

at all.  Markov chains can be developed from purely conceptual geologic data and will 

result in an unconditioned realization of spatial variability.  This approach is useful when 

conducting hypothetical simulations where some type of model heterogeneity is desired.  

The Markov chain methods particularly conducive to these situations are the embedded 

transition probability, transition rate, and maximum entropy methods. 

3.4 Multidimensional Markov Chains 
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 Typical site stratigraphic data is conducive to developing vertical spatial 

variability.  However, rarely is the quantity of data adequate to develop an accurate 

model in the lateral directions.  The combination of Walther’s Law and the transition 

probability approach allows for a logical method of developing lateral spatial variability 

from vertical spatial variability.  Walther’s Law states that vertical successions of 

deposited facies represent the lateral succession of environments of deposition.  

Therefore, a logical method of generating a 3-D model of spatial variability would be 

first to develop a 1-D Markov chain in the vertical direction based on site data, assuming 

there is such data.  Second, using Walther’s Law and geologic knowledge, one can 

develop lateral, strike and dip, Markov chains of spatial variability.  However, one issue 

that arises when applying vertical transition trends to lateral directions is how to cope 

with asymmetric vertical trends like fining upwards.  For example, if in the vertical 

direction, sand tends to deposit on gravel as would be typical in a fluvial deposition, there 

will be a transition rate associated with the transition of sand->gravel and gravel->sand.  

The transition of gravel->sand will be greater than sand->gravel because of the fining 

upward trend.  However, in the lateral direction, which of these transition rates should be 

applied?  Although the trend of sand next to gravel remains in the lateral direction, the 

transition rates of sand->gravel and gravel->sand should be equivalent or symmetric as 

defined by 
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Carle (Carle, 1996) addresses this issue but simply indicates that lateral rates can be 

inferred from the vertical rates without explicitly suggesting how this should be 
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accomplished.  As part of this research, we developed a strategy for averaging the vertical 

transition rates to come up with the lateral rates.  This averaging technique involves a 

three-step procedure:  

1. Compute the lower-half rate ( LSR ) that will satisfy symmetry with the upper-
half rate ( uR ) for the vertical data using Eqt. 3.26. 

2. Set the lower-half rate for the lateral direction ( '
LR ) equal to 

2
)( LSL RR +

 

3. Compute the upper-half rate for the lateral direction ;
UR  that will satisfy 

symmetry with the new lower-half rate ( '
LR ) using Eqt. 3.26. 

In addition to the averaging technique applied to the off-diagonal terms of the 

lateral transition rates, an adjustment was made to the diagonal terms of the rate matrix.  

It will be remembered that the diagonal terms correlate to the average mean lengths by 

Eqt. 3.25.  Generally in depositional patterns, lateral mean lengths are larger than their 

counterparts.  Therefore, the lateral mean length generally need to be increased by a 

factor F prescribed by the user.  This factor F is equal to the ratio of the lateral mean 

lengths/vertical mean lengths.  If the mean length for category K increases by a factor F, 

the corresponding transition rate will decrease by that same factor F according to Eqt. 

3.25.  And the row sum for category K must therefore decrease by the factor F according 

to Eqt. 3.13.  For example, given the vertical transition rate matrix zR , if the lateral mean 

lengths are all increased by a factor F =10.0, the resulting lateral rate matrix xR with the 

ratio affect only (without the average technique applied) would be 
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Eqt. 3.27 illustrates the extrapolation of a vertical transition rate matrix to a lateral 

transition rate matrix with application of both the averaging technique as well as the 

adjustment for the ratio of vertical to lateral average mean lengths. 
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Once the transition rate matrices have been defined for each of the three primary 

directions, the three 1-D Markov chains can then be interpolated to any direction with 
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where β  denotes the background category, zyx handhh ,  are the zandyx,  direction 

components of +++= 222
zyx hhhhφ .  For the negative lag vector components, say xh− , 

entries from the rate matrix xR−  corresponding to the opposite direction x−  are defined 

by 
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3.5 Eigensystem Analysis 

 MCMOD performs an eigensystem analysis because of the mathematical 

requirements of developing a continuous-lag Markov chains as a geostatistical model of 

spatial variability.  This process requires the following calculations: 

•  Evaluate the matrix exponential form of Markov chain give by Eqt. 3.4 

•  Evaluate the matrix logarithm of a transition probability matrix given 

by Eqt. 3.30 

•  Convert a discrete-lag Markov chain to a continuous-lag Markov chain 
by combing Eqt. 3.4 and Eqt. 3.30 

 

[ ]
φ

φ
φ h

h
∆

∆
=

)(ln T
R ...................................................................................... Eqt. 3.30 

where φR is a transition rate matrix, T is a transition probability matrix, and φh∆ is the 

change in the lag in the direction φ .  Equations 3.4 and 3.30 cannot be computed directly 

from the matrix entries.  Eigenvaules for both φR  and T must be computed in the 

analysis. 

3.6 Developing a Simulation 

 The generation of an indicator Kriging simulation via the transition probability 

geostatistics approach involves three general steps:  

1) Generate Markov chains in the primary directions 



 41

2) Extrapolate 1-D Markov chains to a 3-D system 

3) Establish an initial simulation of material identifications based on the Markov 

chains and then condition the simulation to borehole data.   

 

In this research, we utilize the T-PROGS software package developed by Steven F. Carle.  

The T-PROGS software consists of three separate algorithms to perform each of these 

steps, GAMEAS, MCMOD, and TSIM respectively. 

 GAMEAS is an algorithm that processes borehole data and determines geologic 

characteristics such as material proportions and transition probability curves in a given 

direction.  Typically, GAMEAS is only applicable to vertical data because lateral data is 

too sparse for accurate results.  Input for GAMEAS includes a parameter file, (Figure 

3.7), that has site characteristics such as material names, lag identification, and statistical 

information.  

START OF PARAMETERS  
data.eas /input file 
1  2  3 /x,y,z columns 
4  4  5  6  7 /nvar, var 1,2,3,…columns 
-1.  2. /vmin, vmax 
datatpz.eas /output file 
41 /# lags 
0.3 /lag spacing 
0.15 /lag tolerance 
1 /ndir 
0.0  90.  0.25  -90.  22.5  0.25 /az, daz, azbw; dip,…,… 
16 /# of bivariate statistics 
1  1  11 /j, k, 11=tp 
1  2  11 
1  3  11 
1  4  11 
2  1  11 
2  2  11 
2  3  11 
2  4  11 
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3  1  11 
3  2  11 
3  3  11 
3  4  11 
4  1  11 
4  2  11 
4  3  11 
4  4  11 
 

Figure 3.7 Sample parameter file for GAMEAS. (Carle, 1999) 

 

Furthermore, GAMEAS requires a site data file that contains a material identification at 

each x, y, and z location, as shown in Figure 3.8.   

Data 
7 
x       =  easting 
y       =  northing 
z       =  elevation above mean sea level 
1  =  debris flow 
2  =  floodplain 
3  =  levee 
4  =  channel 
2132.8 2487.4 137.07 0 1 0 0 
2132.8 2487.4 136.77 0 1 0 0 
2132.8 2487.4 136.47 0 1 0 0 
2132.8 2487.4 136.17 0 1 0 0 
2132.8 2487.4 135.87 1 0 0 0 
2132.8 2487.4 135.57 1 0 0 0 
2132.8 2487.4 132.27 0 1 0 0 
2132.8 2487.4 131.97 0 1 0 0 
2576.2 2695.5 186.48 0 1 0 0 
2576.2 2695.5 182.28 0 0 0 1 
2576.2 2695.5 181.98 0 0 0 1 
2576.2 2695.5 181.68 0 0 0 1 
2576.2 2695.5 181.38 0 0 0 1 
2576.2 2695.5 181.08 0 1 0 0 
2576.2 2695.5 175.98 1 0 0 0 
. 
. 
. 
 

Figure 3.8 Sample data file. (Carle, 1999) 
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Hence, a typical application of GAMEAS would involve the creation of the parameter 

and data file from vertical borehole data.   

GAMEAS parses through the borehole data and determines the proportions of 

each material as well as the transition relationships between each material.   The 

transition probability curves generated by GAMEAS provide a model from which 

geologic data such as proportions, vertical mean lengths, and transition probability rates 

can be extrapolated.  The proportions, mean lengths, and transition rates assist in the 

generation of vertical Markov chains required in MCMOD and TSIM.  Other geologic 

information like embedded transition probabilities and frequencies can be inferred from 

the borehole data.  The vertical transition probability parameters generated with the aid of 

GAMEAS can then be used to develop Markov chains in the strike/dip directions.  This 

can be accomplished with application of Walther’s Law or utilization of more interpretive 

methods of generating Markov chains like the maximum entropy approach or the 

embedded transition approach.  The computation of Markov chains in the three primary 

directions enables the generation of a 3-D Markov chain with MCMOD. 

 MCMOD is a utility that converts three individual 1-D Markov chains into a 

single 3-D Markov chain system.  MCMOD also requires a parameter file that contains 

some geologic and grid data and the definition of each 1-D Markov chain in the primary 

directions (Figure 3.9).  The definition of each Markov chain includes the method used to 

generate the Markov chain and the corresponding matrix of rates.  

4 /# of categories 
 0.565  0.19  0.179 /proportions   
2 /background category 
../llnl/tp/mcmod1_21097.dbg /name of debugging file 
../llnl/tp/tpxyz1.bgr /output file for 3-D model  
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../llnl/tp/det.bgr /output file for determinant 
0.05  0.05  0.05 /determinant extent for 3-D model 
3.0  10.  0.3 /dx, dy, dz for 3-D model 
../llnl/tp/llnltpxm.eas /X-direction output file 
200  1. /X-direction: # lags, spacing 
1 /1=r, 2=d, 3=etp, 4=etf, 5=maxe 
-0.125   0. –1. –1. /row 1 transition rates 
0. 0. 0. 0. /row 2 transition rates 
0.0042 0. -0.167 -1. /row 3 transition rates 
0.004 0. 0.084 -0.1 /row 4 transition rates 
../llnl/tp/llnltpym.eas /Y-direction output file 
200  2.5 /Y-direction; # lags, spacing 
1 /1=r, 2=d, 3=etp, 4=etf, 5=maxe 
-0.042   0. 0.0036 0.0022 /row 1 transition rates 
0. 0. 0. 0. /row 2 transition rates 
0.0013 0. -0.05 0.016 /row 3 transition rates 
0.0008 0. 0.017 -0.02 /row 4 transition rates 
../llnl/tp/llnltpzm.eas /Z-direction output file 
200  0.1 /Z-direction; # lags, spacing 
2 /1=r, 2=d, 3=etp, 4=etf, 5=maxe 
../llnl/tp/data.eas /data file 
2 /lag # 

Figure 3.9 Sample parameter file for MCMOD (Carle, 1999) 

The output from MCMOD is a 3-D transition probability model file and a determinant 

file that are used in TSIM. 

 TSIM is a utility that builds alternative, equally probable spatial distributions of a 

random variable that honor hard data at specified locations.  TSIM has two major 

functions: First, it establishes an initial configuration with the sequential indicator 

simulation (SIS) algorithm using a transition probability-based cokriging estimate.  SIS 

includes four basic steps at each “unsimulated” nodal location chosen sequentially along 

a random path. 

1. A search is conducted for nearby data locations. 

2. A local conditional probability distribution is estimated by cokriging values of 
the nearby conditioning data and already “simulated” data. 



 45

3. A random number is chosen which determines the category from the 
probability distribution. 

4. The simulation is updated. (Carle, 1996) 

These four steps are repeated at each “unsimulated” node visited along the random path, 

with each cokriging estimate conditioned to the sequentially updated version of the 

simulation. 

After completing the SIS, TSIM iteratively improves the initial configuration by 

the simulated quenching (zero-temperature annealing) algorithm.  The quenching process 

iteratively minimizes an objective function, O that computes the quality of the outcome 

as compared to the measured data by   
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Figure 3.10 illustrates the improvement realized from the quenching process. 
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Figure 3.10 Vertical (z)-direction transition probabilities for models of spatial variability 
with SIS only and with SIS and quenching. (Carle, 1996) 

The two processes are mutually exclusive because the SIS step does not accurately honor 

known data and the simulated quenching cannot function without an initial configuration.  

The product of TSIM is a 3-D array of material identification numbers corresponding to 
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the grid information entered in the parameter file illustrated in Figure 3.11.  The input to 

TSIM includes the data file used in GAMEAS, a parameter file, and the two output files 

of MCMOD: a 3-D transition probability model file and a determinant file. 

4 /number of categories 
0.066  0.565  0.19  0.179 /proportions 
../llnl/sim/simxyz.bgr /output file 
1 /output format: 1 = binary, 2 = ascii 
1 /debugging level 
tpsim.dbg /debugging file 
4175 /seed 
1 /number of realizations 
1966.3   -20  3. /xcenter, nx+, xsiz 
3023.5   -20  10.0 /ycenter, ny+, ysiz 
142.07   -20  0.3 /zcenter, nz+, zsiz 
1  4 /ndmin, ndmax 
1 /ibasis: 0 = cov, 1 = tp 
0.01 /wratio 
../llnl/tp/tpxyz.bgr /trans. Prob. Model file 
../llnl/tp/det.bgr /determinant file 
../llnl/data/data.eas /input data file 
0.  0. /azimuths: coord, true 
0.  0. /dip: coord, true 
junkaz. bgr /azimuth int*1 file 
junkdip.bgr /dip int*1 file 
4  0.0001  -1 /maxit; tol; -1 = no dcl, 1 = lag1 
0.4 /limit by determinant 
 

Figure 3.11 Sample TSIM parameter file. (Carle, 1999) 

Thus the final product of these three algorithms (GAMEAS, MCMOD, and TSIM) is a 

set of N 3-D arrays of stochastically-generated geologic units that honor known data.  

Sample applications of the T-PROGS software will be illustrated in Chapter 6—Case 

Study. 
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4 INDICATOR ARRAYS TO HUF ARRAYS 

 Using transition probability geostatistics with MODFLOW models results in two 

basic limitations.  First, the underlying indicator Kriging equations used by the T-PROGS 

software are formulated such that the MODFLOW grid must have uniform row, column, 

and layer widths.  The row width can be different from the column width, but each row 

must have the same width.  This results in a uniform orthogonal grid.  While 

MODFLOW grids are orthogonal in x and y, the layer thickness is allowed to vary on a 

cell by cell basis.  This makes it possible for the layer boundaries to accurately model the 

ground surface and the tops and bottoms of aquifer units.  If a purely orthogonal grid is 

used, irregular internal and external layer boundaries must be simulated in a stair-step 

fashion either by varying material properties or by activating/inactivating cells via the 

IBOUND array.  A second limitation is that in order to get a high level of detail in the 

simulated heterogeneity, the grid cell dimensions are generally kept quite small.  This can 

result in difficulties in the vertical dimension.  The large number of layers with small 

layer thicknesses near the top of the model generally ensures that many of the cells in this 

region will be at or above the computed water table elevation (for simulations involving 

unconfined aquifers).  As a result, these cells will undergo many of the numerical 

instabilities and increased computational effort issues associated with cell wetting and 

drying. 
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4.1 Hydrogeologic Unit Flow (HUF) Package 

The new Hydrogeologic Unit Flow (HUF) package is an alternative to the Block-

Centered Flow (BCF Package) and the Layer Property Flow (LPF Package) in 

MODFLOW 2000. Each of these packages is used to compute cell-to-cell conductances 

from the layer geometry and aquifer properties.  These packages manage the flow 

parameters required to solve the governing flow equation in MODFLOW.  The HUF 

algorithm was developed by Evan Anderman (Anderman, 2000).  This package includes 

a set of arrays defining the model stratigraphy in a grid independent fashion.  The 

stratigraphy data are defined using a set of elevation and thickness arrays.  These arrays 

have the same number of rows and columns as the MODFLOW grid but are independent 

of the MODFLOW grid in the vertical direction.  The first array defines the top elevation 

of the model.  The remaining arrays define the thicknesses of a series of hydrogeologic 

units, starting at the top and progressing to the bottom of the model.  For each array of 

thicknesses, many of the entries in the array may be zero.  This makes it possible to 

simulate complex heterogeneity, including pinchouts and embedded lenses that would be 

difficult to simulate with the LPF and BCF packages.  When MODFLOW runs, it parses 

through each MODFLOW grid cell and determines the percentage of each HUF layer 

with its corresponding hydraulic conductivity and computes an equivalent hydraulic 

conductivity and applies it to the entire MODFLOW grid cell.  The hydraulic governing 

equation computes the heads based on these equivalent hydraulic conductivities. 

The HUF package has some unique advantages over the BCF and LPF packages 

in MODFLOW.  First, property arrays can be defined independently of the grid.  
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Therefore, soil heterogeneity and detail can be maintained in the model without 

increasing the cell density in the grid.  This reduces computational time and memory 

requirements.  Furthermore, representing detailed soil heterogeneity with a grid approach 

would require thin layers.  Thin layers near the top of the grid poses a problem in 

MODFLOW because of the potential for the cells in those layers to go dry.  If the cells go 

dry at any time while MODFLOW is calculating a solution, the cells become inactive and 

remain dry.  Therefore, cells that go dry might not accurately represent the hydraulic head 

in that cell.  MODFLOW has a “cell rewetting” option that rewets cells after going dry, 

but this presents more complexity in the solution. 

4.2 T-PROGS to HUF Conversion Algorithm 

The primary goal of my research was to develop an algorithm for merging output 

from the T-PROGS software to input data for the HUF package.  Using this algorithm, it 

is possible to generate stochastic indicator simulations of a study area with or without 

borehole data and read them into HUF layers, thus combining the benefits of the HUF 

package, transition probability geostatistics, and stochastic simulations.  The basic 

approach used by the algorithm is to overlay a dense background grid on the MODFLOW 

grid and run T-PROGS on the background grid.  A set of HUF arrays is then extracted 

from the background grid for use with the MODFLOW model.  The main steps of the 

algorithm are as follows: 

1. Create a MODFLOW grid. 

2. Create a Background grid with a higher grid density in the vertical 
direction relative to the MODFLOW grid. 
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3. Run T-PROGS to get a set of indicator arrays on the background grid. 

4. Convert the T-PROGS output from the background grid to the HUF input 
arrays. 

The end result of this conversion process is N sets of HUF input arrays, each array 

corresponding to one 3D indicator array from the T-PROGS simulation.  These sets can 

then be used as input to a stochastic flow simulation.  Each of these steps will now be 

described in more detail. 

4.2.1 Create a MODFLOW Grid 

The first step is to create a MODFLOW grid with the desired number of layers.  

The user performs this step, but the remainder of the steps are performed internally.  The 

layer elevations are interpolated to match the aquifer boundaries.  The row and column 

widths are uniform but the layer thicknesses may vary from cell to cell.  The MODFLOW 

grid can have curvilinear layer boundaries.   

4.2.2 Create a Background Grid 

The next step is to create a background grid that encompasses the MODFLOW 

grid.  The rows and columns of the background grid match the MODFLOW grid but the 

layer thicknesses are uniform and relatively thin, resulting in a much greater number of 

layers than the MODFLOW grid.  The user specifies the number of layers incorporated 

into the background grid.  The two grids are identical in plan view, but in side view the 

background grid encompasses an area that bounds the MODFLOW grid.  If the 

MODFLOW grid is curvilinear, then the background grid will potentially have cells that 
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exist above and below the MODFLOW grid in a given column.  This becomes important 

when the indicator arrays generated with T-PROGS are interpolated to the MODFLOW 

grid.   

4.2.3 Run T-PROGS 

Once the background grid is generated, a T-PROGS simulation is performed to 

get a set of indicator arrays on the background grid.  A brief review of this process is 

given below.  A detailed description of this process is given in Appendix B—GMS/T-

PROGS Interface. 

1. Initialize a T-PROGS simulation.  Select materials included in the 
simulation (if boreholes exist, materials are inherited from the boreholes) 
and the background material. 

2. Define the vertical Markov chain with geologic intuition.  If borehole data 
exist, the T-PROGS utility, GAMEAS can aid in this process. 

3. Define the lateral (strike/dip) Markov chains from the vertical Markov 
chain. 

4. Specify the number of layers in the background grid and run T-PROGS 
with the HUF option selected. 

4.2.4 Convert the T-PROGS Output 

Once the indicator data have been generated on the background grid, each of the 

indicator arrays is transferred from the background grid to a set of HUF 

elevation/thickness arrays.  As mentioned above, the row/column configuration is 

identical for both grids.  Each column of indicator data corresponds to a column in the 

MODFLOW grid.  Therefore, each column of indicator data is applied to its 

corresponding column in the MODFLOW grid with the following process illustrated with 
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Figure 4.1.  The colors correlate to HUF arrays defined with hydrogeologic units in a 

background grid, and the MODFLOW grid is outlined with black cells. 

 
Figure 4.1 Illustration of T-PROGS --> HUF. 

Consider the first grid column from the left in Figure 4.1.  Since the top of the 

background grid in a particular column may not be the same as the MODFLOW grid, the 

elevation of the top of the MODFLOW grid is identified in the background grid, and the 

material identification is extracted at that location (Silty_or_Clayey_Fine_Sand in this 

case).  It can be seen from Figure 4.1 that multiple instances of a material can be 

encountered in a single column (Silty_Clay and Silty_or_Clayey_Fine_Sand).  The index 

of occurrence of each material is stored because the index of occurrence and the material 

identifies the HUF layer at each location in the MODFLOW grid.  The HUF layer is 

retrieved or created based on the material identification and index of occurrence.  The 

consecutive sequence of cells with a common material is then converted to an entry into 

the appropriate HUF thickness array, and the top elevation of those consecutive cells is 

entered in the HUF top elevation array.  When a change in the material assignment is 

found (Clean_Sand in this case), the process is repeated.  This process is repeated until 
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the bottom elevation of the MODFLOW grid is encountered.  Once again, this bottom 

elevation might not correlate with the bottom elevation of the background grid.  This 

entire process is then repeated for the remaining columns. 

Figure 4.2 illustrates the side view of a MODFLOW grid with four curvilinear 

layers.  The background grid used for the T-PROGS algorithm had the same plan view as 

the MODFLOW grid, but it contained twenty vertical layers.  The different colors 

correlate to material zones that were mapped to different HUF layers generated by the 

process described above.  Figure 4.2 demonstrates the ability to define soil heterogeneity 

independent of the MODFLOW grid.  It also demonstrates the ability to use a curvilinear 

MODFLOW grid.  The vertical scale has been exaggerated by a factor of 5.0 in this 

figure. 

 
Figure 4.2 Sample HUF arrays for a four-layer grid. 

After populating the HUF package in MODFLOW with the output from T-PROGS, 

hydraulic parameters like vertical and horizontal conductivity are assigned to each 

material.  Head solutions are then generated with MODFLOW.  The combination of T-
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PROGS and the new HUF package in MODFLOW 2000 allows users to maintain detail 

in soil heterogeneity while reducing complexity, memory requirements, and 

computational time by minimizing the number of grid cells. 
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5 SINGLE LAYER MODFLOW MODELS 

 Although MODFLOW is a three-dimensional model, a majority of the 

MODFLOW models constructed by typical users are 2D models consisting of one model 

layer.  There are several reasons why 2D models are so common.  One reason is that 

many of these models are regional models where the aquifer thickness is very small 

compared to the lateral extent of the model.  As a result, the flow directions are primarily 

horizontal and little improvement is gained by adding multiple layers to the model.  Even 

with local scale models, the aquifer thickness is often small enough that one-layer models 

are considered adequate.  2D models are also attractive due to the simplicity of the model 

increased computational efficiency.  One of the problems associated with using multiple 

layers for MODFLOW models with unconfined aquifers is that as the water table 

fluctuates, the upper cells may go dry.  These cells will not rewet even if the water table 

subsequently rises, unless the rewetting option has been selected in the flow package 

(BCF, LPF, or HUF).  The rewetting issues can often be avoided with a one-layer model. 

When developing a one-layer model, the modeler must determine how to 

distribute the hydraulic conductivity values within the layer.  One option is to assume a 

homogenous aquifer; this is typically a gross over-simplification since aquifers are 

usually highly heterogeneous.  Therefore, a common approach is to delineate zones of 

hydraulic conductivity by examining the subsurface stratigraphic data.  In many cases, 
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these data are in the form of borehole logs.  These borehole logs often exhibit 

substantial heterogeneity and don’t always exhibit definitive trends between adjacent 

boreholes.  Furthermore, the boreholes are often clustered with large regions of the model 

lacking any borehole data.  The modeler then faces a difficult task of trying to determine 

a rational approach to delineating two-dimensional zones of hydraulic conductivity based 

on complex 3D borehole data. 

As part of this research, we developed a technique for developing 2D zones of 

hydraulic conductivity from borehole logs using transition probability geostatistics.  The 

technique is simple, fast, and preserves proportions and trends exhibited by the borehole 

data.  

5.1 Description of Algorithm 

 The 2D T-PROGS approach provides a simple, rational approach to representing 

borehole data in a one-layer, 3-D ground water model.  The T-PROGS algorithm 

accurately represents the spatial variability trends in the borehole with a 3-D Markov 

chain system developed by GAMEAS and MCMOD.  GAMEAS and MCMOD are used 

to develop 1-D Markov chains in the primary directions: vertical, strike, and dip.  The 

Markov chains mathematically represent the heterogeneity in the boreholes.  The process 

up to this point is identical for a single or multiple layer model.  Then, the algorithm 

parses through each borehole and computes a predominant material as illustrated in 

Figure 5.1.  In the input file to TSIM, a single record is written out for each borehole.  

This record includes the x and y coordinates and a z coordinate corresponding to the 
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average grid elevation.  The z coordinate is not critical in this case since the interpolation 

is performed entirely in the xy plane.  For the category data, a 1 is assigned to the column 

that correlates to its predominant material.   

 
Figure 5.1 Data file for a one-layer model. 

When TSIM runs, the predominant material for each borehole is assigned to its 

corresponding location in the one-layer grid, and during the quenching process, 

simulations are conditioned to those data points. Although the simulation can honor the 
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spatial variability evident in the entire borehole, it can only condition to one material at 

each borehole location.  With our algorithm, this material always corresponds to the 

predominant material in the borehole.  The materials assigned to the other cells honor the 

proportion, transition, and juxta-positioning tendencies inherent in the borehole data.  

Once again, the output from this algorithm can be utilized for stochastic simulations. 

Figure 5.2 illustrates an example of the 2D approach.  The boreholes are labeled 

with their corresponding predominant material.  The figure illustrates the ability to 

accurately condition to known borehole data.   
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Figure 5.2 3D borehole condensed into a one-layer model using the 2D approach. 
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6 CASE STUDIES 

 This chapter describes a case study used to illustrate the new algorithms described 

in the previous two chapters.  The case study includes indicator simulations generated 

with T-PROGS, MODFLOW head solutions, and particle tracking analyses.  The case 

study demonstrates the application of the new algorithms in the context of a stochastic 

simulation.  Four different methods will illustrate this application: 3-D orthogonal grid, 

HUF arrays, single layer grid, and indicator simulation in the absence of borehole data. 

6.1 Site Description 

 The site selected to illustrate the transition probability approach of MODFLOW 

modeling is the Longhorn Army Ammunition Plant (LHAAP) in Eastern Texas.  The 

plant is inactive now, but during its active status, it produced, distributed, and 

decommissioned various types of munitions.  These processes contaminated the surface 

and groundwater hydrologic systems with a mixture of chemicals from solvents and 

oxidizers to explosives.   

 Since the purpose of this case study is to demonstrate the application of stochastic 

generation of subsurface stratigraphy and not to perform a comprehensive analysis of the 

groundwater transport at this site, some general assumptions were made about the site 

conditions and model construction.  A detailed, rigorous groundwater and surface water 
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modeling study was performed by the U.S. Army Engineer Waterways Experiment 

Station (WES).  The borehole data and general hydrologic properties of the site were 

extracted from the WES model provided by Cary Talbot (REFERENCE). 

6.2 Description of Model 

 The entire LHAAP site is illustrated in Figure 6.1.  The site covers approximately 

8,420 acres. 

 

Figure 6.1 LHAAP and ”Local study area”.  The dots represent boreholes. 

The area modeled in this case study is a local scale model covering approximately 40 

acres near the center of the LHAAP site indicated by the small rectangular area on Figure 
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6.1.  The technique described in this thesis is more applicable to local scale models than 

to large-scale, regional models.  In order for the T-PROGS software to accurately model 

the transition trends, the grid cells used in MODFLOW must be smaller than the average 

lens thickness of the materials being modeled.  If the grid cells are larger than the average 

material lens thicknesses, the transition trends are not developed, and while the material 

proportions are correct, the material assigned to each cell is random.  With this in mind, 

the subset selected for the local study area was chosen because it contained adequate 

borehole data to develop transition trends, and it was small enough to create cells that 

were smaller than the average lens lengths but not computationally unrealistic. 

There are 77 boreholes inside the local study area.  The borehole logs originally 

contained 60 different materials defined by the Unified Soil Classification System 

included in Table 6.1.  

Table 6.1 Original materials in site boreholes. 

Materials 

CH CLCL FI LI MLSP SCCL SMCL SP SPSP 

CHCH CLLI GC MH OH SCML SMGM SPCL SW 

CHCL CLML GCGC MHMH OL SCSC SMML SPFI SWSM

CHSC CLOL GM ML OLCL SCSM SMSC SPGP TS 

CHSM CLPT GMGM MLCL PT SCSP SMSM SPML  
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CL CLSC GP MLMH PV SH SMSP SPSC  

CLCH CLSM GW MLSM SC SM SMSW SPSM  

In order to make the problem manageable with the transition probability 

approach, the materials were condensed down to four primary materials: clean sand, sand 

with fines, clay, and silt.  The proportions for each material extracted from the boreholes 

inside the local study area are listed in Table 6.2. 

Table 6.2 Materials in the local study area with corresponding proportions and hydraulic 
conductivity. 

Material Proportion Horizontal Conductivity 
(ft/d) 

Vertical Conductivity 
(ft/d) 

Clean Sand 9% 230 115 

Sand with Fines 51% 12 6 

Silt 6% 2 1 

Clay 34% 0.03 0.015 

An extraction well was introduced into the site that pumped an average of 300 GPD.  The 

well was screened in different layers depending on the number of layers in the model.  

However, the plan-view location of the well illustrated in Figure 6.2 by the “X” was 

constant in all the sample models.  Specified head boundaries were assigned to the east-

west boundaries, and no-flow boundaries marked the north-south boundaries.  Heads 

were assigned to produce a water flow pattern from west to east.  Figure 6.2 illustrates the 

specified head for the single layer model. 
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Figure 6.2 Plan view layout of the grid.  Dots represent borehole locations. 

The plan-view grid dimensions are the same in all the sample models.  The dimensions 

are 1,674 feet in the strike direction and 1,031 feet in the dip.  The grid is partitioned into 

70 divisions in the strike direction and 50 in the dip direction.  These dimensions 

correlate to cell lengths and widths of 24 and 20 feet respectively.  This is important 

because the average material lens lengths must be less than the cell dimensions in the 

corresponding direction to develop any meaningful transition trends.  The average lens 

lengths for the strike/dip and vertical directions are illustrated in Table 6.3. 

Table 6.3 Strike/dip and vertical lens lengths for each material. 
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Material Strike/Dip Lens 
Length (ft) 

Vertical Lens 
Length (ft) 

Clean Sand 59 5.9 

Sand with Fines 132 13.2 

Silt 39 3.9 

Clay 73 7.3 

6.2.1 Transition Trends 

The same vertical, strike, and dip transition trends were used for all three of the 

models: 3-D orthogonal grid, single layer grid, and HUF arrays. Markov chains were 

developed in the vertical, strike, and dip directions with the assistance of the GAMEAS 

utility inside T-PROGS.  Figure 6.3 illustrates the transition data in the vertical direction 

used to develop the Markov chains.  A relatively accurate fit exists between the measured 

curve and the Markov chain curve.   
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Figure 6.3 Vertical transition probability curves. 

The average vertical lens lengths extracted from these curves for each material are listed 

in Table 6.3.  The lateral (strike and dip) transition probability curves have the same 

shape, but the average lens lengths are ten times the lengths of their vertical counterparts. 

6.3 3-D Orthogonal Grid 



 68

 The first sample application involves a twenty-layer orthogonal grid of the subset 

area illustrated above.  The purpose of this example is to illustrate the application of the 

transition probability approach in the general 3D case, as opposed to the HUF method 

developed through this research.  For this case, the extraction well is screened in layer 15.  

T-PROGS requires uniform cell widths, lengths, and heights for a multi-layer model.  

The grid dimensions in the vertical direction are 86 feet partitioned into twenty layers. 

These dimensions correlate to cell dimensions of 2.9 feet in the vertical direction.  This is 

important because the average material lens lengths must be less than the cell dimensions 

in the corresponding direction to develop any meaningful transition trends.  The average 

vertical lens lengths for each material are illustrated in Table 6.3. 

A 3D Markov chain was developed with MCMOD.  Seventy-five realizations 

were generated with TSIM.  Figure 6.4 and Figure 6.5 display an oblique view of two of 

the realizations.  The vertical scale has been exaggerated by a factor 5.0 in each of the 

figures. 
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Figure 6.4 Oblique view of the realization #1 with cells filled with material colors. 

 
Figure 6.5 Oblique view of the realization #2 with cells filled with material colors. 



 70

MODFLOW head solutions for the top layer of each grid are illustrated in Figure 6.6 and 

Figure 6.7 (black contours).  In addition, a particle tracking analysis was performed on 

each solution with MODPATH (blue lines).  

 
Figure 6.6 Head  (black) and particle flow line (blue) solution for realization #1. 
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Figure 6.7 Head  (black) and particle flow line (blue) solution for realization #2. 

Note the differences in the pathlines for the two samples shown in Figure 6.6 and 

Figure 6.7.  One of the benefits of this approach is that the model realistically portrays 

complex capture zones resulting from aquifer heterogeneity.  This is further illustrated by 

the model cross-sections shown in Figure 6.8 and Figure 6.9. 
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Figure 6.8 Side view of flow lines and water table. 

 
Figure 6.9 Side view of flow lines and water table. 

As part of the particle tracking analysis, a 3D probabilistic capture zone was developed 

from the MODFLOW solutions in which the cell at the well was not dry.  Some of the 

realizations developed by T-PROGS assigned clay to the cells including and adjacent to 

the well.  For some of the realizations, the well could not extract the quantity of water 

specified by the pumping rate with the given conductivity of clay.  Therefore, the cell 
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went dry.  In fifty-one of the seventy-five solutions, the cell including the well did not go 

dry, and those solutions were used in the probabilistic capture zone analysis.  A 3D 

probabilistic capture zone is generated by placing a particle at each cell center of the grid 

for each simulation and tracking the cell backward in time to determine if it terminates at 

the cell.  The particle tracking analysis was conducted with MODPATH (Pollock, 1994).  

The probability that the particle at the cell reaches the well is computed by dividing the 

number of simulations in which the particle from that cell reached the well by the total 

number of simulations. The probability at each cell is then contoured with iso-surfaces. A 

set of iso-surfaces developed for different probabilities of capture is illustrated in Figure 

6.10-Figure 6.13. 

 
Figure 6.10 3D capture zone for a probability shell equal to 10%. 
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Figure 6.11 3D capture zone for a probability shell equal to 30%. 

 

 
Figure 6.12 3D capture zone for a probability shell equal to 50%. 
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Figure 6.13 3D capture zone for a probability shell equal to 70%. 

A cutaway of the iso-surfaces was also generated to illustrate the interior configuration of 

the capture zone (Figure 6.14 and Figure 6.15).   

 
Figure 6.14 3D cutaway of the interior of the capture zone with iso-surfaces capped. 
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Figure 6.15 3D cutaway of the interior of the capture zone with iso-surfaces not capped. 

6.4 Single Layer Model 

The grid for the single layer model has similar plan-view dimensions as the 3D 

case, but the grid has only one layer in the vertical direction.  The 2D Approach outlined 

in Chapter 6 was used when conditioning the realizations to the borehole data.  Ninety 

realizations were developed for the local study area.  Two of the realizations are 

illustrated in Figure 6.16 and Figure 6.17.  The cells are filled with their corresponding 

material identification color.  The heads computed by MODFLOW are also contoured 

(black), and the flow lines computed by MODPATH are displayed in blue. 
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Figure 6.16 Realization #1 for 2D approach with MODFLOW and MODPATH 
solutions. 
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Figure 6.17 Realization #2 for 2D approach with MODFLOW and MODPATH 
solutions. 

A visual analysis of the material distribution in each of these realizations confirms the 

material proportions listed in Table 6.2 and the impact of variability in soil stratigraphy 

on head and transport behavior.  The pathlines clearly show channeling effects and there 

is a large difference in the well capture zone, even though both cases are conditioned to 

the same borehole data. 

 In addition to the head solutions, a 2D probabilistic capture zone illustrated in 

Figure 6.18 was computed for those solutions in which the cell with the well assigned to 
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it did not go dry.  Eighty-three of the ninety solutions were used in the capture zone 

analysis.  The 2D probabilistic capture zone differs from the 3D capture zone described 

above.  For the 2D case, particles are distributed at the water table surface for every cell 

instead of the cell center.  A backward particle tracking analysis is then performed and 

the probability of capture is computed the same way as in the 3D case.  The contours 

correlate to the probability of a particle being captured by the well marked with an “X”. 

 
Figure 6.18 2D probabilistic capture zone for the well. 

6.5 HUF Arrays 
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The grid for the HUF case has similar plan-view dimensions as the 2D and 3D 

case.  However, the grid used to model the HUF array application has four layers.  

Furthermore, the grid has uniform row and column dimensions, but the layer dimensions 

vary throughout the grid and are curvilinear as evident in Figure 6.19.  The extraction 

well is screened in layer three.  The approach outlined in Chapter 4 was used to develop 

realizations of HUF arrays with the T-PROGS software.  Ninety realizations were 

developed for the local study area.  Two of those realizations are illustrated in Figure 

6.19 and Figure 6.20.  The effect of the soil variability is demonstrated by the flow lines 

and head contours.  The cells are filled with the material identification color 

corresponding to the hydrogeologic unit defined by the HUF arrays.   

 
Figure 6.19 Realization #1 for HUF approach with MODFLOW solutions (side view). 
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Figure 6.20 Realization #2 for HUF approach with MODFLOW solutions (side view). 

The plan view figures (Figure 6.21 and Figure 6.22), illustrate the heads computed by 

MODFLOW contoured in black and the flow lines computed by MODPATH in blue. 

 
Figure 6.21 Realization #1 for HUF approach with MODFLOW and MODPATH 
solutions (plan view). 
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Figure 6.22 Realization #2 for HUF approach with MODFLOW and MODPATH 
solutions (plan view). 

 In addition to the head solutions, a probabilistic capture zone was computed for 

all the simulations.  A set of iso-surfaces corresponding to differing values of probability 

of capture was developed for the zone is illustrated in Figure 6.23-Figure 6.26. 
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Figure 6.23 HUF capture zone for a probability shell equal to 10%. 

 
Figure 6.24 HUF capture zone for a probability shell equal to 20%. 
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Figure 6.25 HUF capture zone for a probability shell equal to 30%. 

 
Figure 6.26 HUF capture zone for a probability shell equal to 40%. 

A cutaway of the iso-surfaces was also generated to illustrate the interior configuration of 

the capture zone (Figure 6.27). 
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Figure 6.27 HUF cutaway of the interior of the capture zone with iso-surfaces capped.
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7 CONCLUSION 

 Soil stratigraphy in ground water modeling is typically defined by large, 

homogeneous polygonal zones.  However, actual soil deposition is dominated by small 

lenses, and soil parameters such as hydraulic conductivity can vary by two orders of 

magnitude or more inside a ten foot radius.  Various stochastic simulators exist to 

generate N equally probable realizations of variability in soil stratigraphy.  Transition 

probability geostatistics for indicator simulation presents an attractive method of 

generating soil stratigraphy from typical site characterization data such as boreholes.  

Some unique qualities of the transition probability approach make it the candidate of 

choice.  First, since it is a type of indicator simulation, this algorithm operates on discrete 

parameters, which correlates well with geologic facies.  It is conducive to stochastic 

inverse modeling like PEST and other models.  Stochastic realizations can be conditioned 

to site data introduced by boreholes.  The transition probability approach also has some 

unique advantages over the traditional Kriging methods like cross-variograms.  The 

transition probability approach provides a conceptual framework for incorporating 

geologic interpretations such as material proportions, average lens lengths, background 

material, and depositional patterns into the model.  It also enhances the development of 

asymmetric depositional patterns like fining-upwards or radial morphology.  In addition, 

the transition probability approach enhances stratigraphic development in lateral 

directions where the absence of adequate borehole data makes curve fitting unrealistic.  A 
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transition probability software package, T-PROGS, developed by Steven F. Carle was the 

tool used to incorporate stochastic stratigraphy simulation into MODFLOW with the 

Department of Defense Groundwater Modeling System (GMS) interface. 

 The indicator arrays generated by the transition probability simulation can be 

converted into material identification arrays for use in the Layer Property Flow (LPF) 

package in MODFLOW 2000.  The material set approach presents a rational way of 

generating soil stratigraphy laterally between borehole data.  Furthermore, material sets 

can be used to assign three dimensional borehole data to a one-layer model.  The 

indicator arrays generated by the transition probability simulation can also be converted 

into layer elevation and thickness arrays for use with the new Hydrogeologic Unit Flow 

(HUF) package in MODFLOW 2000.  This makes it possible to preserve complex 

heterogeneity while using reasonably sized grids.  This approach can also be used to 

generate multiple realizations of aquifer zonation for MODFLOW simulations involving 

one-layer models. 

 The stochastic tools described above enable MODFLOW users to generate soil 

stratigraphy conceptually with geologic knowledge in the presence of sparse or even no 

borehole data.  These tools also enable more realistic modeling of local transport 

dominated by low and high conductivity lenses. Furthermore, the compatibility of the 

transition probability approach with stochastic inverse modeling enables the use of an 

automated parameter estimation engine such as PEST to optimize the parameter values 

associated with the material zones generated for each model instance.  The end result of 

this process is that each of the N model runs is calibrated to field observed heads and 

flows.  This provides a greater confidence in the probabilistic model predictions. 
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 Additional topics of research that would extend and improve the application of the 

transition probability approach in MODFLOW exist.  One topic of research being 

pursued currently by Jonathan Green and Dr. Norman Jones in the Environmental 

Modeling Research Lab (EMRL) at Brigham Young University is probabilistic capture 

zones generated from multiple MODFLOW head solutions based on T-PROGS output.  

Although a description of the application of the transition probability approach has been 

given in this these, it has not been demonstrated that this approach accurately models 

aquifer behavior.  Therefore, further research is recommended to ascertain the validity of 

stochastic simulations.  Furthermore, additional research could demonstrate if a higher 

degree of detail correlates to a more accurate model of aquifer behavior.  Another issue 

that arises with stochastic simulations of soil stratigraphy involves modeling wells.  If a 

well is included in a model and a stochastic simulator is used to generate realizations of 

soil stratigraphy, it is likely that a low-conductivity material will populate the cells 

surrounding the well.  This situation creates a potential for the cells to go dry around the 

well.  In field conditions, wells are developed to flush out fines surrounding the well, 

which increases the hydraulic conductivity around the well.  Further research could 

address this dilemma and potentially develop a method of simulating a developed well in 

MODFLOW. 
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APPENDIX B GMS/T-PROGS INTERFACE 

As part of this research, a graphical user interface to the T-PROGS software was 

developed in the Department of Defense Groundwater Modeling System (GMS).  The 

interface is contained in the T-PROGS Menu in the Borehole Module.  The GMS 

interface takes a five-step approach to generating spatial realizations of geologic units.  

Algorithms from the T-PROGS software are used intermittently throughout those five 

steps.  If the user has not initialized a T-PROGS simulation, the five steps are 

accomplished in a wizard with each step automatically following the previous step.  

Otherwise, each step can be completed individually.  These five steps are illustrated in 

Figure BB and include: 

1) General options 

2) Vertical Markov chain definition  

3) Strike Markov chain definition  

4) Dip Markov chain definition  

5) Simulation generation   

These options become initialized when the New Simulation command is selected.  They 

are dimmed when the current simulation is deleted. 
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Figure BB T-PROGS menu commands. 

B.1 Building a Grid 

 A prerequisite for building T-PROGS data is a three-dimensional grid.  The 

indicator arrays generated by the T-PROGS algorithm are interpolated to a grid, and 

therefore, a grid must exist.  The T-PROGS algorithm is compatible with two types of 

grid.  If the option to generate material sets for a multi-layer grid is selected, the grid 

must be orthogonal with uniform row, column, and layer dimensions.  The row 

dimensions can be different from the column dimensions, but the row dimensions must 

be the same throughout the grid.  The same conditions exist for the columns and layers.  

If the option to generate HUF arrays or material sets for a one-layer grid is selected, the 

grid must have uniform row and column widths, but cells can have varying Z dimensions 

and a curvilinear geometry. 

B.2 General Options 

 The first step in the GMS interface includes the definition of general T-PROGS 

options.  When a user selects the command to initialize a T-PROGS simulation, New 

Simulation, the dialog illustrated in Figure CC or Figure DD appears.  If boreholes do not 

exist in the model, an unconditioned simulation will be generated.  In this case, the user 
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selects the materials to be used and a corresponding background material. The “Materials 

Editor” button enables users to quickly create, delete, or rename materials and the 

material list is automatically regenerated.    

 
Figure CC Markov chain general options dialog without borehole data. 

 

If boreholes do exist in the model, the list of materials is automatically generated 

as in Figure DD.  Since this list is inherited from the boreholes, the user cannot alter the 

list of materials and so the Materials Editor button is dimmed.  In addition to generating 

the material list, the code parses through the boreholes to compute the most dominant 

material and automatically selects the default background material.  However, the user 

can change the background material.  It is possible that the grid defined by the user does 

not circumscribe all of the borehole data.  In this case, the user can opt to use all the 

boreholes in the model to generate the transition trends.  Or the user can only use the 
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boreholes inside the grid boundary for generating the transition trends.  The user specifies 

this option with the button, “Include Boreholes Outside of Grid Boundary.” The use of 

the boreholes inside the grid boundary is the default. 

 
Figure DD Markov chain general options dialog with borehole data. 

 

The user also enters an azimuth in this dialog.  The azimuth is illustrated in Figure 

EEand determines the orientation of the primary directions of the depositional trends in 

the strike/dip directions.  These trends generally are aligned with the primary directions 

of horizontal flow in the aquifer.  Theoretically, the azimuth can be oriented 

independently from the grid orientation.  However, in practice, if the grid and azimuth 

orientations are offset by more than about 40 degrees, checkerboard patterns appear in the 

indicator array results.  Hence, the azimuth orientation is set equal to the grid orientation 

by default.  However, the grid angle is defined counterclockwise as illustrated in Figure 
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FF, and the azimuth angle is clockwise as illustrated in Figure EE.  Therefore, if the grid 

angle is 40 degrees, then the azimuth angle will be –40 degrees by default.  

 
Figure EE Definition of azimuth in 
T-PROGS algorithm 

 

 

 
Figure FF Grid angle orientation. 

One limitation for both the cases with and without boreholes is that a maximum of 

five materials can be used in the T-PROGS algorithm.  This limitation was imposed to 

keep the data processing and user-interface reasonably simple.  Although five materials 

present a limitation, borehole data can generally be easily condensed down to five or 

fewer materials.  Furthermore since this is a stochastic approach, which is based on 

probability, the detail generated with numerous materials is rarely justifiable anyway.  In 

addition, as the number of materials increase, the ratio of process time to detail becomes 

inefficient. 
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B.3 Vertical (Z) Markov Chains 

 Once the general options are input, the Vertical (Z) Markov Chains dialog 

illustrated in Figure GG appears.  This dialog is composed of three main sections: a plot 

section, a Markov Chains section, and a spreadsheet section.   

 
Figure GG Vertical Markov chain dialog. 

All three sections enable the user to develop a 1-D Markov chain in the vertical direction. 

B.3.1 Plot Section 

 The plot section (area in red) includes the array of curves, the Lag spacing edit 
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field, the Compute button, and the Max lag distance for plots: edit field.  The number of 

plots in the array produced correlates to the number of materials used in the simulation.  

If N materials are used, an N by N array of plots will illustrate the transition probabilities 

for each material with respect to every other material.  Every plot is labeled with a name 

and units and can be maximized with a command in the menu produced by right-clicking 

on the curve in question (Figure HH). 

 
Figure HH Maximized plot. 

The curves are automatically regenerated anytime a change is made in the other sections 

of the dialog. 
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 By default, the curves plot transition probabilities that correspond to an equal 

probability of each material occurring as illustrated in Figure II. 

 
Figure II Curves with equal probability. 

If boreholes exist in the model, the Compute button becomes undimmed.  When the user 

clicks the Compute button, the parameter files required for running GAMEAS are 

generated and GAMEAS is executed.  A separate window displays the details of the 

GAMEAS run, which allows the user to monitor the output from the GAMEAS 

simulation as shown in Figure JJ.   
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Figure JJ GAMEAS executable inside GMS interface. 

When GAMEAS completes a successful run, the results, including the material 

proportions and transition probability curves from the measured data, are read into the 

corresponding data fields in the dialog as illustrated in Figure GG.  Furthermore, the 

transition rates which correspond to the slope of the transition probability curves when 

0=φh  (see Chapter 3) are interpolated from the measured data curves.  In addition to 

running GAMEAS, the code parses through the borehole data and calculates the 

embedded transition probabilities and frequencies as defined in Chapter 3.  These values 

are stored in arrays that correspond to options #2 and #3 in the Markov Chains section of 

the dialog in Figure GG. 

In addition to the curves generated from the measured data, a set of curves is 
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generated from the Markov chains as defined by the option selected in the Markov 

Chains section.  In Figure GG, the measured data curve is green, and the Markov chain 

curve is blue.  Hence, each plot contains two curves: a curve from the measured data and 

a curve from the Markov chain definition.  Only the Markov chain curve is used in later 

calculations.  The curve from the measured data plays a curve-fitting role.  Generally, the 

parameters in the dialog are changed until the Markov chain curve mimics the measured 

curve as illustrated in Figure GG. 

The Lag spacing determines how dense the curves are, and the Max lag distance 

for plots determines the range of the curves.  The curves always range from 0 to the Max 

lag distance for plots horizontally, and they range from 0 to 1 vertically to honor 

probability constraints. 

B.3.2 Markov Chains Section 

There are five alternate methods of generating Markov chains in this section (area 

in green in Figure GG).  Four of these five methods correspond to the theory described in 

the Markov chain section of Ch. 3.  Furthermore, these methods are in a radio-button 

configuration to allow the user to conveniently change from one method to another.  Each 

of these five methods will be described.  The first four options have previously been 

described in the Markov Chain section of Chapter 3.  The curves used to illustrate the 

different methods in the following section were derived from borehole data extracted 

from the Longhorn Army Ammunition Plant (LHAAP) in Eastern Texas. 

The first option, Edit the transition rates, is exactly that.  One can directly edit the 
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array of transition rates that are listed in the Transition Rates section.  The theory that 

supports this option is described in the Markov chain section of Ch. 3.  This option is 

useful after selecting the Compute button and running GAMEAS because slopes can be 

inferred from the measured data curves.  GAMEAS outputs transition probability curves.  

Transition rates used in this option  

correspond to the slope of the transition probability curve at a lag, )(φh = 0.  When 

reading the output from GAMEAS, the transition probability rates, φ,jkr , are interpolated 

as 

φφφφ ,,,, 3*14.02*29.01*57.0 jkjkjkjk rrrr ++= ......................................Eqt. B.1 

where r1, r2, and r3 are the slopes defined by a straight line from the origin out to lag1, 

lag2, and lag3 respectively.  It will be remembered that the transition rate obeys Eqt. 

3.11.  Therefore, as the lag approaches zero, more weight should be given to the 

corresponding slope.  Hence, a weight of 0.57, 0.29, and 0.14 were assigned to r1, r2, and 

r3 respectively.  Once the slopes are computed for each entry in the matrix, the mean 

lengths for each category are computed by 

φ
φ

,
,

1

jj
j r

L −= ................................................................................................Eqt. B.2 

Figure KK illustrates the Vertical (z) Markov Chain dialog when option #1 is selected. 
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Figure KK Vertical (Z) Markov Chain dialog with option #1 selected. 

Regardless of which Markov Chain option is selected, the background row and column, 

Sand_w/_fines, is dimmed because the values in this row and column are automatically 

computed from the remaining entries by probability constraints described in the Markov 

chain section of Ch. 3.  In addition, with this option selected, the Lens Length column is 

also dimmed because the lens lengths are automatically computed and updated from the 

diagonal terms in the Transition Rates spreadsheet.  The diagonal terms of the Transition 

Rates spreadsheet must be negative to obey probability rules.  With this data, this method 

produces an accurate fit between the measured (green) and the Markov chain (blue) 

curves at small lag spaces. 
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The second option is Edit embedded tans. probabilities. This is a more intuitive 

method of generating Markov chains and is conducive to sites with and without data.  It 

is conducive to sites with data because the embedded transition probabilities can be 

determined from the borehole data.  When a simulation is initialized, if borehole data 

exist default embedded transition probabilities are computed from the borehole data.  If 

borehole data do not exist, the embedded transition probabilities can be estimated with 

some basic geologic knowledge including the average mean lengths of each material for 

each direction and depositional trends.   Figure LL illustrates the curves generated with 

this method. 

 
Figure LL Vertical (Z) Markov Chain dialog with option #2 selected. 
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With this option selected, the diagonal terms are dimmed because these values are 

derived from the values entered in the Lens Length column using Eqt. B.2.  Adjusting the 

proportions, lens lengths, or the off-diagonal terms in the Transition Rates spreadsheet 

alters the curves. 

The third option in the Markov Chains section is Edit embedded tans. 

Frequencies (Figure MM).   

 
Figure MM Vertical (Z) Markov Chain dialog with option #3 selected. 

This option is similar to option #2, except embedded transition frequencies populate the 

off-diagonal terms of the Transition Rates spreadsheet.  Embedded transition frequencies 
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are also computed from borehole data when a simulation is initialized if borehole data 

exist.  Once again, this is an intuitive framework with geologic knowledge including 

average mean lengths and depositional trends. 

The fourth option is Edit maximum entropy factors (Figure NN). 

 
Figure NN Vertical (Z) Markov Chain dialog with option #4 selected. 

While this option can be used with borehole data, it is ideally it is ideally suited for cases 

without borehole data. With this option, the user edits the proportions for all but the 

background material and the means lens lengths for all materials.  The lens lengths are 

used to populate the diagonal terms of the Transition Rates spreadsheet using Eqt. B.2, 
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and the maximum entropy factors fill the off-diagonal terms of the spreadsheet.  As 

described in Chapter 3, the maximum entropy factors represent the ratio of the transition 

rate to the maximum entropy transition rate.  A maximum entropy factor of 1.0 represents 

maximum disorder in depositional tendencies.  A rate greater than 1.0 indicates that the 

two categories tend to occur next to each other.  A factor less than unity would infer the 

opposite.  This is an intuitive method of generating Markov chains and is conducive to all 

types of sites.  This method enables logical incorporation of anisotropy into the model 

with the maximum entropy factors. 

The fifth option, Fit curves to a discrete lag, is only undimmed if a transition 

probability curve from measured data exists in memory.  When this option is selected, the 

Lag # edit field is undimmed and the user enters the discrete lag the curves will be fit to 

(Figure OO).   
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Figure OO Vertical (Z) Markov Chain dialog with option #5 selected. 

This option produces Markov chains that are computed from the measured transition rates 

produced by GAMEAS.  GAMEAS computes a set of transition probabilities at each lag 

specified by the user.  This option computes an array of transition rates from the slope of 

the curves generated by GAMEAS (green).  The transition rates correlate to the shape of 

the curve from the origin to the lag # specified by the user in the Lag # edit field in Figure 

OO.  Therefore, the cells of all the spreadsheets in the dialog are dimmed because the 

values are inherited from the measured curves (green).  The values in the spreadsheets 

change depending on the lag # entered. 
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B.3.3 Spreadsheet Section 

 This section, area in blue in Figure GG, includes two separate spreadsheets: 

Transition Rates and Proportions & Mean Lengths spreadsheets.  The Transition Rates 

spreadsheet contains the rate entries that correspond to the selected option in the Markov 

Chains section.  The Proportions column holds the proportions for each material. The 

Mean Lengths column contains the average mean length in the vertical direction for each 

material. 

B.4 Strike (X) Markov Chains 

 Once the vertical Markov chains have been defined, the user is then presented 

with the Strike (X) Markov Chains dialog.  This dialog has the same setup as the vertical 

dialog (Figure PP).   
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Figure PP Strike/Dip Markov chain dialog. 

There are three minor differences between this dialog and the vertical dialog.  The first 

difference is in the Markov Chains section.  The option, Lens width ratios, replaces the 

Fit curves to a discrete lag option.  The Fit curves to a discrete lag option is not 

applicable because horizontal measured transition probability curves do not exist due to 

lack of data in the horizontal direction.  The Lens width ratios option is the default option 

and should be used in most cases.  This option allows users to apply the transition data 

entered in the vertical direction to the horizontal direction.  The transition rate matrix is 

automatically populated based on the Walther’s Law assumption and by using the three-

step process described in the Multidimensional Markov Chains Section of Chapter 3.  The 
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proportion data are directly inherited from the vertical data.  In addition, rather than 

entering the mean lengths, the user enters a ratio corresponding to the ratio of the lens 

length in the x direction to the lens length in the z direction.  For example, if the lens 

length for material A is 5 feet in the z direction and the user enters 10.0 for the ratio, then 

the lens length in the x direction would be 50 feet.  Due to the lack of measured data in 

the horizontal direction, another minor change is that each plot in the Plot Section 

contains only one curve: the Markov chain curve.  The Lens Width Ratios option is 

particularly useful because the only required input is lens length ratios for the non-

background materials.  The remaining data are all inherited from the vertical data 

B.5 Dip (Y) Markov Chains 

 The dip dialog has an identical appearance and functionality as the strike dialog. 

B.6 Running TSIM 

 Once the general options and the 1-D Markov chains in all three primary 

directions have been defined, a simulation can be generated.  Selecting the Run TSIM 

command in the T-PROGS menu in Figure BB initializes this process.   
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Figure QQ General options for simulation generation. 

The command produces the dialog shown in Figure QQ.  This dialog contains some 

general options including the number of simulations created, maximum number of 

quenching iterations, and the type of output desired.  Either material sets or HUF arrays 

can be generated.  A material set is an array of material ids that correspond to each cell in 

the grid, and each material has hydraulic parameters associated with it.  HUF arrays are 

arrays of material ids that can be independent of the number of grid layers in the grid.  

This option is only undimmed if MODFLOW is initialized.  In Figure QQ, MODFLOW 

has not been initialized so this option as well as the Number of layers: edit field is 

dimmed. 

 When the OK button is selected on the TSIM Options dialog, the parameter files 

for MCMOD are generated and the executable is launched in the same way as the 

GAMEAS executable (Figure RR).   
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Figure RR MCMOD executable inside GMS interface. 

After a successful completion, TSIM is automatically executed.  After its successful 

completion the output of spatial variability is read into the appropriate material set arrays 

or HUF arrays as prescribed in the TSIM Options dialog.  Both for the MCMOD and 

TSIM executable, the time remaining for completion is estimated and displayed in the top 

right-hand dialog as illustrated in Figure RR.  Furthermore, prior to completion, one can 

exit the program by selecting the Abort button in the bottom of the dialog displayed in 

Figure SS. 
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Figure SS TSIM executable inside GMS interface. 

 Only one T-PROGS simulation can exist at once.  The data associated with a T-

PROGS simulation is written out and read in with the GMS project data.  The interface is 

user-friendly with sufficient warning and HELP messages throughout the interface. 

B.7 Post-Processing 

 The indicator arrays generated by T-PROGS are read into material sets or HUF 

arrays as outlined in Chapters 4 and 5.  If a simulation of N material sets is generated, all 

N material sets are organized into a Material Set folder stored in the 3-D grid module 

inside a data tree window as illustrated in Figure TT.   
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Figure TT Data tree used to organize HUF and Material sets. 

The simulation folders can be renamed, moved, or deleted by the user by right-clicking 

on the item or by simply dragging the folder.  Furthermore, not only can multiple 

realizations be generated, but also multiple sets of realizations can be generated, saved, 

organized, and manipulated efficiently and simply.  The different indicator arrays or 

material sets are applied to the grid by simply selecting the corresponding item in the data 

tree and the grid display is automatically updated.  The active material set or data set that 

is currently incorporated into the grid is marked with a bolded name and icon.  In  

Figure UU, the grid material identification array is populated with data from the data 

from the active material set, Material Set 2 2.  Another material set simulation exists as 

well as HUF data set simulations. 
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Figure UU Grid populated with data from Material Set 2 2. 

 HUF arrays are stored and organized in a similar way.  Except the HUF data are 

all stored in a HUF Data folder.  

 

 


