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ABSTRACT

APPLICATION OF TRANSITION PROBABILITY GEOSTATISTICS FOR

INDICATOR SIMULATIONS INVOLVING THE MODFLOW MODEL

Justin R. Walker

Department of Civil Engineering

Master of Science

This thesis describes a technique for utilizing the transition probability
geostatistics method for stochastic simulations using the MODFLOW model. Transition
probability geostatistics has numerous advantages over traditional indicator Kriging
methods including a simpler and more intuitive framework for interpreting geologic
relationships and the ability to simulate juxtapositional tendencies such as fining upwards

sequences. Theindicator arrays generated by the transition probability simulation can be



converted into material identification arrays for use in the Layer Property Flow (LPF)
package in MODFLOW 2000. Furthermore, materia sets can be used to assign three
dimensional borehole data to a one-layer model. The indicator arrays generated by the
transition probability simulation can also be converted into layer elevation and thickness
arrays for use with the new Hydrogeologic Unit Flow (HUF) packagein MODFLOW
2000. This makesit possible to preserve complex heterogeneity while using reasonably
sized grids. A case study is presented illustrating all three types of applications on areal

sitein Texas.
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1 INTRODUCTION

Ground water model al gorithms compute hydraulic heads corresponding to
hydraulic properties like conductivity and transmissivity. Typically, site investigations
utilizing boreholes, ground penetrating radar, or other methods delineate the spatial
distribution of hydraulic properties. Unfortunately, site data commonly represent at best
one percent of the actual study area. Therefore, homogeneity is assumed to create
polygonal zones with uniform hydraulic properties that are applied to the remainder of
the study area. However, soil properties like hydraulic conductivity can vary as much as
two orders of magnitude within aten-foot radius. Asaresult, although overall regional
aquifer behavior and analysis can be represented with uniform hydraulic properties, local
conditions can deviate drastically from the model representation. The impact of soil
heterogeneity can be magnified by the presence of small lenses, which dominate flow
conditions. This situation can be significant when analyzing the transport of

contaminants or when alocal analysis requires precision and accuracy.

One approach for dealing with model heterogeneity is stochastic simulations
based on multiple equally plausible candidate realizations of the site heterogeneity.
Idedlly, such an approach would enable the generation of variability in subsurface soil
stratigraphy based on interpretable geologic parameters such as lens width, material

proportions, juxta-positioning tendencies and anisotropy. Multiple realizations that



are conditioned to borehole data provide model ers with a rational approach for dealing
with uncertainty associated with site characterization. Stochastic simulations can be
applied to regional representations of the aquifer behavior in addition to local scale
simulations. Stochastic simulations are particularly well-suited to local scale models
since the resulting complex heterogeneity is more representative of actual stratigraphic
deposition. This heterogeneity makes realistic and potentially more accurate contaminant
transport simulation possible by simulating the preferential flow channels resulting from
thin lenses of clays, sands, or other materials. The ultimate result of a stochastic
approach is multiple ssmulations of hydraulic parameters that create a probabilistic
solution. Such a solution has more credence and provides a better understanding of

actual site conditions.

1.1 Indicator vs. Monte Carlo Approach

There are multiple methods of generating stochastic simulations of hydraulic
parameters. The most common methods are the indicator approach and the Monte Carlo
approach. The indicator approach operates on discrete parameters like geologic facies or
material types. Indicator geostatistics generates multiple distributions of material zones
(each of whichiscalled a“realization”) that have hydraulic characteristics assigned to
each material. This approach presumes that a relationship between geologic facies and
hydraulic properties can be reasonably estimated. An indicator approach is defensible

because hydraulic parameters and geologic data are categorical.

The Monte Carlo approach involves the generation of variability in the hydraulic



properties associated with a pre-defined material distribution. The variability for a
simulation is created with a random number generator from a mean and standard
deviation for the parameter being analyzed. The random number generator can be
designed such that the resulting parameters exhibit either alinear (purely random),
normal, or log-normal distribution. Each model instance is then generated by producing
arandom value for each of the selected parameters. The model is then run once for each
combination of parameter values. The resulting multiple solutions can be used to assess
the probability of some model outcome. The greater the number of model runs, the
greater the confidence in the results. The Latin Hypercube approach is a variation on the
Monte Carlo approach that ensures that the parameters values are combined in afashion

that allows for an equivalent confidence with fewer model runs.

The research described in this thesis utilizes the indicator approach. The main
advantage of the indicator approach over the Monte Carlo approach isthat it is conducive
to stochastic inverse modeling. Stochastic inverse modeling involves using an automated
parameter estimation engine such as PEST (Doherty, 2000) to optimize the parameter
values associated with the material zones generated for each model instance. The end
result of this processisthat each of the N model runsis calibrated to field observed heads

and flows. This provides a greater confidence in the probabilistic model predictions.

Another advantage of the indicator geostatistics approach isthat it allows for
geologic interpretation. A random number generator with only mathematical
interpretation produces Monte Carlo realizations. Conversely, indicator geostatistics

functions on the existence of geologic depositional knowledge. In addition, indicator



simulations can be conditioned to existing site data.

1.2 Trangtion Probability Geostatistics

The transition probability approach of indicator geostatisticsis arelatively new
method for representing heterogeneity in 3-D soil stratigraphy. Steven F. Carle and other
researchers have demonstrated that this approach has some unique advantages over
traditional indicator methods like cross-variograms. The transition probability approach
isrational and interpretable as well as mathematically efficient due to probability
constraints. Carle has developed a software package called T-PROGS that operates on
the basis of transition probabilities (Carle, 1999). The research in thisthesis utilizes the
T-PROGS software and the groundwater modeling tools of the Department of Defense
Groundwater Modeling System (GMS) to generate 3-D multiple realizations of soil

heterogeneity.

1.3 TheMODFLOW M odel

MODFLOW (Harbaugh, 2000) is the most widely used groundwater model.
MODFLOW isa 3D saturated flow model that can be used for steady state or transient
simulations and it can represent a variety of sources and sinks. Sinceit is a saturated
flow code, itisarelatively efficient model. Model runs generally converge rapidly and
model instability israre. This makes MODFLOW an ideal candidate for stochastic

simulations where alarge number of runs are required.

1.4 Overview of Research



The objective of my research wasto link transition probability geostatistics with
the MODFLOW model for stochastic ssimulations. This research has resulted in the
development of two new algorithms for building MODFL OW-compatible datasets from
indicator arrays generated by transition probability geostatistics. Both tools operate with
the aid of the T-PROGS software developed by Steven Carle. Thefirst tool enables the
generation of multiple realizations of HUF data, which can be incorporated into the new
HUF package in MODFLOW (Anderman, 2000). The second tool condenses three-
dimensional borehole data into atwo-dimensional MODFLOW grid based on the
dominant material in each borehole data. It then generates stochastic two-dimensional

realizations of material types that honor the borehole data.

In the remainder of thisthesis, | will first discuss the theory behind the transition
probability approach of indicator geostatistics and Steven Carle' s software package, T-
PROGS. Next, | will describe the interface that enables the implementation of the T-
PROGS algorithm inside GMS. Thirdly, the two new tools of stochastic HUF arrays and
2D material setswill be outlined. Last, sample applications of these two new tools will

be described.



2 LITERATURE REVIEW

Various methods exist to generate stochastic realizations of subsurface
stratigraphy. Stochastic simulation involves generating aternate, equally probable, high-
resolution models of the spatial distribution of aquifer zones. A simulation is considered
“conditioned” if the resulting realization honors known data values at their respective
locations. Methods of generating stochastic simulations were reviewed in order to
determine what methodol ogy would be most effective and compatible with MODFLOW
simulations. These methods can be grouped into five general types: Normal processes,
Indicator-Based Algorithms, p-Field Simulation Algorithms, Boolean Algorithms, and

Simulated Annealing (Deutsch, 1998). In addition, Kriging algorithms will be reviewed.
2.1 Normal Processes

Normal, or Gaussian-related, methods are the algorithms of choice for most
continuous random variables. Gaussian random function models are unique because of
their analytical simplicity. The basis of normal processesisthe Central Limit Theorem.
Normal processes are particularly useful because many natural systems can be modeled
with random variables that are approximately normally distributed. A stochastic process

{X(t),t0F issaid to be normal if for any integer n and any subset {t,,t,,...t} of T n

random variables X(t),...X(t,) arejointly normally distributed (Parzen, 1964).



HMMM.. THISSTILL LEAVES SOMETHING TO BE DESIRED.

2.2 p-Fidd Simulation

In contrast to sequential simulation methods, which condition to the original data
aswell as previously simulated values, p-Field ssmulation condition only to the original
data. Asaresult, conditional cumulative distribution functions need only be calcul ated
once instead of iteratively calculated for each realization. This advantage streamlines
time requirements, which, is one of the advantages of the p-Field method. The
conditional cumulative distribution functions (ccdf’s) can be obtained through multi-
Gaussian Kriging of the z continuous data or through indicator Kriging performed on

indicator data.

2.3 Boolean Algorithms

Boolean algorithms cover alarge range of categorical simulation algorithms.
Boolean processes are generated by the distribution of geometric objects in space
according to some probability laws. The maor problem with geologic application of
Boolean algorithms is that geological lithofacies are rarely a ssimple parametric shape.
Furthermore, they are rarely distributed uniformly within astudy area. Asaresult, the
determination of a Boolean model is atrial-and-error process until the final stochastic
image is visually satisfactory to the modeler. Calibration of the Boolean model isalso a
matter of art rather than statistical inference. Hence, Boolean methods are usually

custom-built.



24 Simulated Annealing

Simulated annealing is arelatively new approach that is capable of generating
conditional stochastic images of continuous or categorical variables. The basic idea of
simulated annealing is to iteratively perturb an initial image until it satisfies predefined
characteristics included in an objective function. The objective function is minimized
during the perturbations. If the perturbation improves the objection function, itis

accepted. However, some negative perturbations are accepted to avoid local minimums.

Simulated annealing can be CPU-intensive if the quality of the perturbation
cannot be determined accurately and quickly. The key to thistechniqueisto quickly and
accurately ascertain the quality of the image between perturbations. A popular
application of simulated annealing is to improve an initial stochastic image generated
with a Gaussian or indicator algorithm. An initial configuration can be determined
during the simulated annealing process by assigning the conditioning data to the nearest
grid nodes and then assigning the remaining nodes randomly from the user-specified

histogram.

25 Kriging

Kriging is the fundamental mathematical algorithm employed by many stochastic
simulator processes. A concept integral to geostatistics and Kriging is aregionalized
variable. In contrast to random variables, regionalized variables have continuity from
point to point, but the correlation is so complex that is cannot be described by any

mathematical function. Therefore, spatial correlations for regional variables must be



drawn over short distances. Regionalized variables typically describe natural phenomena
that have geographic distributions like depositional tendencies. Geostatisticsisthe
estimation of the form of aregionalized variable in one, two, or three dimensions
(Statistics and Data Analysisin Geology, Davis, 1986). The spatia continuity of a

regional variable can be measured by a variogram, which is a plot of semivariances

¥, given by

A D D N L b Eqt. 2.2

where X, isameasurement of aregionalized variable taken at alocationi, X,,, is

another measurement taken h intervals away, and n is the number of points. If sample of
the data have been taken and the form of the variogram is known, it is possible to
estimate the unsampled points anywhere along the surface. This estimating processis
called Kriging. Unlike most interpolation algorithms, Kriging establishes a measure of
the error or uncertainty of a estimated surface. Traditionally, Kriging is used to provide
estimates for unsampled locations that minimize the error variance at these locations.
However recently, Kriging has been utilized to build probabilistic models of uncertainty
about these unknown locations. The Kriging principle has been presented in numerous
papers and books (GSLIB Geostatistical Software Library and User’s Guide, Deutsch,
1998). There are severa variations of Kriging. | will address five of the approaches:
simple Kriging (SK), ordinary Kriging (OK), Kriging with various trend models (KT),

coKriging, and indicator Kriging (1K).

2.5.1 Simple Kriging



The simple Kriging estimator is defined as

|22 @ =) = 3 A, W[Z(U) = M(U)] oo Eqt. 2.3

where Z(u) is the random variable model at location u, the u, s are the n data locations,
m(u) = E{Z(u)} is the location-dependent expected value of the random value Z(u), the
A, arethe weights, and Z, (U) isthe linear regression estimator, also called the “simple

Kriging” estimator. Simple Kriging does not adapt well to local trends because it

assumes that the mean remains constant.
2.5.2 Ordinary Kriging

Indicator random functions are binary and are therefore ideally suited for
simulating categorical variables. The binary indicator variableisset to 1 if acertain
category is present at a given location, or O if not. The ordinary Kriging estimator is

given by

Zo (W) =D ALV WUZ(Uy) correerverrreeeeresisssseeessiisssseeessisssssssessssssssssessnees Eqt. 2.4
a=1

where A% (1) ’s are the ordinary Kriging weights. Ordinary Kriging is more conducive

to local trends because it allows for alocation-dependent mean. Therefore, it isthe

algorithm of choice for geostatistics.
2.5.3 Trend Model Kriging

Kriging with atrend, or “universal” Kriging, allows for the mean to vary

10



according to a particular trend given by

Zier (W) = D AST U Z(Uy ) cooveevrvenreeeensesssssseessississeeessissssssessssssssssesssees Eqt. 2.5
a=1

where A%7 (U)’s are the Kriging trend weights. Forms of Kriging with atrend are

Kriging with an externa drift, Bayesian Kriging, and factorial Kriging.
2.5.4 CoKriging

While Kriging is traditionally linear regression using data on the same attribute as
that being estimated, cokriging islinear regression that also uses data defined on different
attributes. For example, cokriging could be applied to hydraulic conductivity as the
primary sample, and porosity (which can be related to hydraulic conductivity) as the

secondary sample. The ordinary cokriging estimator of Z(u) is

n N )
Zook (W=D A DZ(Uyy) + D A (WY (Upp) coveerernveerisnensscensseeeeee Eqt. 2.6
al=1l a2=1

wherethe A,,’ s are the weights applied to the n, z samples and the A, s are the weights

applied to the n, y samples.

2.5.5 Indicator Kriging

Anindicator is arandom variable that represents a discrete category at agiven

location. Indicator variables are mutually exclusive and are defined over aregion D by

1if category k occurs at location «x
L(X)=< Eqt. 2.7

0, otherwise

11



where x [1D and category k=1,...,K. Anindicator approach is fundamentally different
than a continuous variable approach. A continuous random variable can assume any
value within agiven range. A geologic example of a continuous variableis hydraulic
conductivity. The hydraulic conductivity at a given location can have any value inside
some rational range. Indicator Kriging produces a | east-square estimate of the conditional
cumulative distribution function (ccdf) at cutoff z, :

[wz)] =E{luz [}
[(uz)] =Prob{z( <z [(n}

where (n) represents the conditioning information available in the neighborhood of
location u. The indicator Kriging process is repeated for a series of K cutoff values

z,,k =1...,K,which discretize the interval of variability of the continuous attribute z
(Deutsch, 1998). The conditional cumulative distribution function represents a
probabilistic model of uncertainty for the unsampled value z(u). If z(u) is categorical,
then the direct Kriging of z(u) provides amodel for the probability that z(u) is equal to
one, or in other words that a particular category prevails at that location u. If z(u) is
continuous, then the selection of the cutoff values, z, becomesimportant. Too many
cutoff values produce computational inefficiency. Too few cutoff values result in the loss

of detail in the mode!.

Onetype of indicator Kriging uses atransition probability approach. The
transition probability method is a modified form of indicator Kriging. The transition

probability approach couples geologic knowledge and mathematical manipulations to
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overcome many of the shortcomings of the traditional indicator geostatistical methods.
Conceptually, the transition probability approach assumes that the future depends entirely
on the present, not the past. When applying it to spatial distribution terms, thetimelagis
replaced with a distance lag and the local occurrence of a category is entirely dependent
on the nearest occurrence of another or the same category. Mathematically, the transition

probability t, (h,) isgiven by

t, (h,) =Pr{(categogry k occursat x+h,)|(category j occursat x)} Eqt. 2.9

where h, represents a positive lag separation in the direction ¢. The transition

probability approach is gaining popularity in geologic applications because it is intuitive

and mathematically efficient.

The transition probability approach to indicator geostatistics was incorporated
into the research described in this thesis. Certain characteristics made it the method of
choice. Firgt, theindicator approach is conducive to geologic applications because
hydrogeology can be categorized into discrete geologic facies. Transition probabilities
can account for asymmetric juxtapositional tendencies like fining-upwards, which are
typical in deposition patterns. Furthermore, the transition probability approach provides
a conceptual framework to incorporate geologic knowledge such as mean lengths,
material proportions, anisotropy, and juxtapositioning. The transition probability
approach helps incorporate geologic interpretation into the development of Markov chain
models of spatial variability, providing means for quantifying subjective insights on

spatial variability that a geologist might otherwise infuse directly into a hand-drawn
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geologic cross-section. A main advantage of the transition probability indicator approach
isthat it is conducive to stochastic inverse modeling. Stochastic inverse modeling
involves using an automated parameter estimation engine such as PEST (Doherty, 2000)
to optimize the parameter val ues associated with the material zones generated for each
model instance. The end result of this processisthat each of the N model runsis
calibrated to field observed heads and flows. This provides a greater confidence in the

probabilistic model predictions.
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3 TRANSITION PROBABILITY GEOSTATISTICS

The research described in this thesis is based upon the transition probability
geostatistics approach for generating multiple realizations of model heterogeneity for use
in indicator based stochastic simulations. The transition probability method is a modified
form of indicator Kriging, but it has several advantages over traditional indicator Kriging.
First, traditional indicator geostatistics does not provide consideration for asymmetric

tendencies because indicator cross-variograms inherently assume symmetry. Asymmetry

implies that

P (1) Z Pris (F) e Eqt. 3.1
or

Pric () Z Prry (N) e Eqt. 3.2

where p,, denotesthe joint probability and h denotes alag separation vector. The

cross-variograms y,, (h) uses an averaging technique illustrated by

ORI O R O L TG D | V7 Eqt. 3.3

Therefore, any asymmetry such asfining upwardsislost. Second, traditional indicator
geostatistics does not have a conceptua framework for incorporating geologic

interpretations into the development of cross-correlated spatial variability. Third,
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traditional indicator geostatistics lack the ability to consider local variable anisotropy
directions like radial morphology of alluvia fans or meandering of fluvial depositional
units and structure resulting from deformation (Carle, 1998). Furthermore, traditional
models of spatial variability are generated by empirical curve fitting a sample indicator
(cross-) variogram with a mathematical function such as a spherical or exponential model
(Carle, 1996). However, geologic datais typically only adequate to develop avariogram
in the vertical direction. The scarcity of site data makes curve fitting impractical in the
strike and dip direction. It is not uncommon to be unable to generate arealistic

variogram even in the vertical direction.

The transition probability approach couples geologic knowledge and
mathematical manipulations to overcome many of the shortcomings of the traditional
indicator geostatistical methods. First, transition probabilities can account for
asymmetric juxtapositional tendencies like fining-upwards. Furthermore, the transition
probability approach provides the conceptual framework to incorporate geologic
knowledge such as mean lengths, material proportions, anisotropy, and juxtapositioning.
The transition probability approach helps incorporate geologic interpretation into the
development of Markov chain models of spatial variability, providing means for
guantifying subjective insights on spatial variability that a geologist might otherwise
infuse directly into a hand-drawn geologic cross-section. The remainder of the chapter
will outline the transition probability approach as developed by Steven F. Carle as
described in various publications including Carle (1996), Carle (1999), Carle et a (1998),

Carle & Graham (1995), Carle & Graham (1997).
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3.1 Markov Chains

Conceptually, when applied to time, a1-D Markov chain assumes that the future
depends entirely on the present, not the past. When applying it to spatial distribution,
timeis replaced with a distance lag and the local occurrence of a category is entirely
dependent on the nearest occurrence of another or the same category. “Mathematically, a
continuous Markov chain is atransition probability model described by a matrix
exponential function, which provides a solution to afirst-order stochastic differential
equation.” (Carle, 1996) The 1-D transition probability matrix T(h,) has the following
definition:

T(h,) =&XP(R,N,) oo Eqt. 3.4
where

tll(h¢) th (h¢)
Th)=| : . :
tKl(hw) tKK (h(/;)

Each matrix entry t,, (h,) is defined by

t, (h,) =Pr{(categogry k occursat x+h,)|[(category j occursat x)} Eqt. 3.5

where h,represents a positive lag separation in the direction ¢. R isatransition rate

matrix
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and will be described later in the text. Markov chains can be used to represent random
systems of spatial variability aswell as structured systems of spatial variability. Markov
chains have found most of their application in one-dimensional systems. However, one-
dimensional Markov chains can be extended to three dimensions by manipulation of one-
dimensional Markov chainsin the three primary directions: strike, dip, and vertical. The
resulting 3-D Markov chain models can then be applied to indicator estimation and
simulation techniques like indicator cokriging, sequential indicator simulation, and
simulated annealing. Markov chains can be defined by a matrix of transition rates that
delineate the probability of changing from one category to another based on alag
distance. These transition rate matrices have uniquely simple properties that enhance
their usefulness. First, indicator variables are mutually exclusive, such as geologic units,

and are defined over aregion D by

1if category k occurs at location x
L)=3 Eqt. 3.6

0, otherwise

where x (1D and category k=1,...,K. According to probability rules, the proportions of

each geologic unit obey

Therow sumsin T(h,) obey

18



The columns sums obey

K
D Pitu () =P DK e Eqt. 3.9
k=1
where
T T 0 L3 R 1 SO Eqt. 3.10

3.2 Optionsfor Creating Markov Chains

| will discuss four alternatives for generating the Markov chains fundamental to
the transition probability approach: definition of transition rates, embedded transition

probabilities, embedded transition frequencies, and maximum entropy factors.
3.2.1 Rates

First, Markov chains can be defined by simply defining the matrix of transition
rates. An N by N matrix of transition rates is required to define the Markov chains for a

model of variability with N geologic units. A transition rate is defined as:

_ atjk (0)

o = —p ], K eeveeeeeeeseesmseessessssesssssssss s Eqt. 3.11
4

Mathematical manipulations of the transition rates are accomplished in matrix form:
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Conceptually, the transition rate describes the change in the transition probability over
the change in lag distance. The diagonal terms of the transition rate matrix are defined

as:

My = —% .......................................................................................... Eqt. 3.12

k.
where L, isthe average mean length of material k in the direction ¢.

Therow sums of R,must obey

K
D i =0 i v Eqt. 3.13
k=1

The column sums obey

K
D PN =0 DK e Eqt. 3.14
j=1

The application of these two constraints eliminates the need to define the row and column
transition rates for one entire category in the system. This category will be referred to in
the remainder of the paper as the background category and will receive attention later in
the report. The transition probabilities for each geologic unit with respect to each other
can be directly calculated from the transition rate matrix and visaversa. An example
transition rate matrix developed for a site near the southwest portion of the Lawrence
Livermore National Laboratory (LLNL) in the Livermore Valley of the Coast Range in

Cdiforniais
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-0.875 0.706 0104 0.064

0.088 -0.447 0150 0.209

71 0024 1080 -1227 0.123
0.040 0.000 0.766 —0.806

-1

The siteisan aluvia fan deposit with alarge proportion of fine-grained materials. The

siteis composed of the materialslisted in Table 3.1.

Table 3.1 LLNL site characterization from core data (Carle, 1996).

Avg. vertical
# facies texture %
lens length
1 Debris flow Poorly-sorted clay gravel 7 1.14
2 Flood plain Clay and silt 56 2.24
3 Levee Silty or clayey fine sand 19 0.82
Sand and gravel
4 Channel 18 1.24
(rounded)

The average vertical lens length for each facie can be confirmed with Eqt. 3.12. The
correlating transition probability curves generated from this site data are represented in

Figure 3.1.
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Figure 3.1 Matrix of vertical-direction transition probabilities for LLNL core data:
measurements (dots) and Markov chain model (solid lines). Intersection of dashed line
(tangent) with lag axis indicates mean length; dotted line indicates proportions (Carle,
1996)

Thisfigureillustrates the unique characteristics and interpretability of the
transition probability approach. First, the intersection of the dashed line (tangent to the
Markov chain at lag = 0) and the lag axis indicates the average vertical mean length of
the corresponding geologic unit. The dotted line indicates the proportion of each
geologic unit. The dotted curve indicates the actual measurements from the borehole
data, and the solid line represents the Markov chain computed from the transition rates.

Conceptually, we see a much greater probability of every materia transitioning to flood
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plain due to the high proportion of that material. We also see agreater probability of
debris flow transitioning to levee than levee transitioning to debris flow. Similar

comparisons can be made for each material.

3.2.2 Embedded Transition Probabilities

Embedded transition probabilities provide a more interpretive method of defining
the directional Markov chains. Figure 3.2 illustrates embedded occurrences of geologic

facies.

2
} embedded
occurrence

Figure 3.2 Embedded occurrences of athree-category system with 1 = white, 2 = gray, 3
= black. (Carle, 1999)

Implementation of an embedded Markov chain analysis requires minor
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computations on the borehol e data.

1. Forget about lag or spatial dependency and rel ative thickness of the beds.

2. Record the succession of “embedded occurrences,” that is, smply log each
occurrence of every geologic unit in borehole data, which might look something like
ABCABACABCABABC.

3. Tally up the transition count matrix, which for the succession above would be

- 51
2 - 3
3 0 -

The diagonal elements are blank because “self-transitions,” e.g. from category 1 to
category 1, are unobservable. That is, stacked beds of the same category are
assumed not distinguishable from asingle bed. The “embedded occurrence” term
refersto a discrete occurrence of category 1, which may consist of either a single bed
or stacked bed.

4. Divide each row by the row sum to obtain the embedded transition probabilities

- 0.833 0.167
040 - 0.60
1.0 0 -

5. Divide each entry by the total embedded occurrences in the matrix to obtain the
transition probability frequency

- 0357 0.071
0143 - 0214
0.214 0.00 -
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Once again, an N by N matrix of embedded transition probabilitiesisrequired in
each primary direction. Conceptually, an embedded transition probability describes the
frequency of the occurrence of material A following material B in the borehole data or
the marginal probability of material A occurring above material B.

nBA‘Z:Pr{material A occurs above|material B occurs below} .. Eqt.

3.15

The embedded transition probabilities are independent of the actual length of occurrence
of agiven material. And the off-diagonal entries of the embedded transition probability

matrix satisfy

D s T L s Eqt. 3.16

Once again, using the LLNL site with debris flow, floodplain, levee, and channel facies,

an embedded transition probability matrix can be constructed as

- 0803 0.124 0.073

o= 0176 - 0390 0434

0026 0846 - 0128
0.045 0.058 0.89%6 -

The embedded transition probability approach provides a more conceptual approach to
generating transition probabilities because embedded occurrences can be easily tallied

from the borehole data. For example, 7,,,)) ,,, and 7m,,)) 1, ,, whichindicates

that levee tends to occur above channel. Once again, application of the probability

properties excludes the need to define the row and column entries for the background
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category. Embedded transition probabilities can easily be converted to transition rates
with

7l
L

_ "tik,z
rjk,z -

............................................................................................ Eqt. 3.17

iz

The transition probability curves associated with the embedded transition probabilities

above areillustrated in Figure 3.3.
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Figure 3.3 Markov chain model fit to matrix transition probability data with the
embedded transition probability (solid line) and the maximum entropy (dashed line)
approaches. Actual measured dataisillustrated with a dotted line. (Carle, 1999)
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The embedded transition probability approach provides a conceptual and accurate method

of generating 1-D Markov chains.
3.2.3 Embedded Transition Frequencies

An embedded Markov chain analysis can also be performed based on embedded
transition frequencies, which are defined as

fag, = Pr{material B occurs above and material Aoccursbelow} ...... Eqt. 3.18

An embedded transition frequency matrix for the LLNL data can be formulated as

(0.0841) 0.0677 0.0101 0.0063
00672 (0.3468) 0.1264 0.1713
71 00085 02971 (0.3395) 0.0340
00085 0.000 02031 (0.2115)

The diagonal terms of the matrix correspond to the marginal frequencies of embedded

occurrence of category j such that:

Similar to the proceeding methods, the probabilistic properties of the matrix make the
definition of one row and column not required in the matrix. Furthermore, transition

frequencies can be converted to transition rates by:

The transition probability curves using the embedded transition frequencies, F, , are

] z!
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illustrated in Figure 3.4.
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Figure 3.4 Transition probability curves from measured data and Markov chain
generated from embedded transition frequencies.

3.2.4 *Independent” or “Maximum Entropy” (Disorder) Transition

Frequencies

Geologic deposition typically presents some juxtapositional tendenciesin the

bedding sequence. Thisorder or disorder in adirection ¢ can be defined by entropy,

S,.of facieto facie transition frequency f,, ,. S, isdefined as:
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However, consider an areathat displays complete disorder in the bedding sequence.

(0.0841) 0.0377 0.0311 0.0152
0.0377 (0.3671) 0.2196 0.1075
0.0311 0.2196 (0.3396) 0.0888
0.0152 0.1075 0.0888 (0.2115)

(Smax) _
F, =

Maximum disorder would be void of any juxtapositional tendencies and would only
depend on mean lengths and proportions. As aresult, FZ(S"‘aX) is symmetric with the

diagonal entries equal to the row/column off-diagonal totals or marginal frequencies. By
comparison to this case, one could determine to what extent a site exhibits juxtapositional

tendencies. For example, if an observed transition frequency f,, , isgreater than

f 5r, then one might determine that there is atendency for material 3 to occur above
material 4. One can develop atransition rate matrix from a maximum transition

frequency matrix, Fz‘smax’ , with three steps. First, one would determine the mean lengths
and proportions for each geologic unit in the corresponding direction. Second, one would
compute the maximum entropy frequency matrix Fz‘smax’ . Third, one would establish the

off-diagonal transition rates relative to the maximum entropy transition rates R{°™,

which can be calculated from F,*°™ by

f (Smax)
(Smax) — ik,z
iz _—L_-Z f (S T Eqt. 3.22
1,z 1K,z

K#j

In practice, maximum entropy application involves maximum entropy coefficients.

Markov chains are quantified with a mean length for the diagonal entriesand a
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coefficient equal to the actual transition rate divided by the maximum entropy transition

rate. These coefficients represent maximum entropy factors.

-1
L, =115

1.78r 500
R§S max) -

0.27r 5

0.11rm

1.80r5m™  0.32r 159

-t 0.58r S

L, =227 '

2.3515m -1
' L,, =082

0.00r 5 2.29r 5

(Smax)
O'4'1r14,z

(Smax)
1.59r

0.45r )

-1
L, =124

A maximum entropy factor of 1.0 displays maximum disorder in depositional tendencies.

A factor greater than unity indicates that the two categories tend to occur next to each

other. A factor less than unity would infer the opposite. The transition probability curves

generated from R®™ are shown in Figure 3.5.
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Figure 3.5 Transistion probability curves generated from measured data and maximum
entropy factors.

Two sets of transition probability curves were generated from two slightly different
maximum entropy factor matrices to demonstrate the application of these factors. The
maximum entropy factors that are bolded and italicized in R{>™ were adjusted slightly

as follows:
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31 32, Llyz — 082 34,

-1
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" . w2, =124

The transition probability curves for channel->floodplain and channel->levee in Figure
3.6 display a slight change from their counterparts in Figure 3.5 due to the variation in the

maximum entropy factors.
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Figure 3.6 Transition probability curves generated from measured data and maximum
entropy Markov chains.
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This concept is particularly useful in interpreting the juxtapositional tendencies of an
existing site by comparing the actual transition rates with those produced with the

maximum entropy method.

3.3 Conceptual Development

One of the unique characteristics of the transition probability approach isthe
conceptual framework that enhances Markov chain development. The conceptual
framework of this approach refers to the ability to logically incorporate intuitive,
geologic parameters such as mean length and proportion into this mathematical
algorithm. It isthis characteristic that has elevated interest and sponsored further
research. Furthermore, this characteristic has made the transition probability approach
more attractive than traditional indicator methods like cross-variograms because they
require abundant data to enable curve-fitting. The conceptual framework that the
transition probability approach is built on enables users to generate relationshi ps between
different materials based on geologic features of the study site. Some of these features
include a background material, mean lens lengths, material proportions, asymmetry,

juxtapositional tendencies, and 3-D Markov chains.

3.3.1 Background Material

Application of the transition probability approach involves the designation of a
background material. The probabilistic constraints of the Markov chains make it

unnecessary to quantify datafor one category. Not only isit unnecessary, but it isfutile
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to do so because values will be overwritten in order to satisfy constraints. Conceptualy,
the background material can be described as the material that “fills’ in the remaining
areas not occupied by other units. For example, in afluvia depositiona system, a
floodplain unit would tend to occupy area not filled with higher-energy depositional units
and would therefore be alogical choice for the background material. The simplification
of abackground material can be illustrated with a three-unit system. A nine-entry system
reduces to afour-entry system with the application the second material as the background

material.

* O H#*
o T T
* O H#*

Mathematically, any material could be selected as the background material.

3.3.2 Material Proportions

Materia proportions are quantified as the proportion of a given material at a
particular site. Thissite characteristic isintegral in the transition probability approach.
Graphically, the material proportions correlate to the sill on the transition probability
curve asillustrated in Figure 3.1. The plotsin each column have approximately the same

sill, which correlates to the proportion of the corresponding material. As h, — o, the

transition probability approaches the proportion.

3.3.3 Mean Length



Conceptualy, the mean Iength,?w of the category k inthedirection ¢ is

defined as the total length of the category k indirection ¢ divided by the number of
embedded occurrences.

= total length of k in direction ¢
“* number of embedded occurences of k

In other words, the mean length, K(p corresponds to the “mean thickness’ in any given

direction. Mathematically, L, , relatesto adiagonal transition probability t, (h,) by

k@
_0t (@ _ 1
oh L,

4 k,@

..................................................................................... Eqt. 3.24

or

1
I’kk’w = _L= ......................................................................................... eq 3.25
k.

Asillustrated in Figure 3.1, the mean length will correspond to the slope of the transition

probability curve at a h, =0. Mean lengths can be used in model development by

establishing the diagonal terms of the rate matrix given the knowledge of material mean
thickness. Alternatively, one can interpret the mean length from the transition probability

model.
3.3.4 Asymmetry
One functional advantage of the transition probability approach over traditional

approaches is the ability to model asymmetry. Cross-variograms are inherently
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symmetric such that y,, (h) =y, (-h) whereas transition probabilities allow for
t, (h) #t, (=h). Thiscapability is particularly useful when modeling systems with

vertical juxtapositional tendencies like fining-upward tendencies in fluvial deposits.

3.3.5 Sparse or No Data

Typica data setsyield noisy transition probabilities, especialy in the lateral
directions. Thetraditional indicator approaches that utilize empirical curve-fitting can be
more complicated than the data warrants. However, the transition probability approach
addresses mathematical and probability theory while providing an interpretive framework
for model development. The transition probability approach isinherently simpler
because it assumes that spatial variability depends only on the nearest |ocation.
Furthermore, in the absence of borehole data one can still develop Markov chains from
basic geologic data: by estimating the proportion, mean length, and juxtapositional

tendencies of the materials.

Markov chains are even conducive to the development of models without any data
at all. Markov chains can be developed from purely conceptual geologic dataand will
result in an unconditioned realization of spatial variability. This approach is useful when
conducting hypothetical simulations where some type of model heterogeneity is desired.
The Markov chain methods particularly conducive to these situations are the embedded

transition probability, transition rate, and maximum entropy methods.

3.4 Multidimensional Markov Chains
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Typical site stratigraphic data is conducive to developing vertical spatial
variability. However, rarely isthe quantity of data adequate to develop an accurate
model in the lateral directions. The combination of Walther’s Law and the transition
probability approach allows for alogical method of developing lateral spatial variability
from vertical spatial variability. Walther’s Law states that vertical successions of
deposited facies represent the lateral succession of environments of deposition.
Therefore, alogica method of generating a 3-D model of spatia variability would be
first to develop a 1-D Markov chain in the vertical direction based on site data, assuming
thereis such data. Second, using Walther’s Law and geol ogic knowledge, one can
develop latera, strike and dip, Markov chains of spatial variability. However, oneissue
that arises when applying vertical transition trends to lateral directionsis how to cope
with asymmetric vertical trends like fining upwards. For example, if in the vertical
direction, sand tends to deposit on gravel as would be typical in afluvia deposition, there
will be atransition rate associated with the transition of sand->gravel and gravel->sand.
The transition of gravel->sand will be greater than sand->gravel because of the fining
upward trend. However, in the lateral direction, which of these transition rates should be
applied? Although the trend of sand next to gravel remainsin the lateral direction, the
transition rates of sand->gravel and gravel->sand should be equivalent or symmetric as

defined by

Carle (Carle, 1996) addresses this issue but ssimply indicates that lateral rates can be

inferred from the vertical rates without explicitly suggesting how this should be
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accomplished. Aspart of thisresearch, we developed a strategy for averaging the vertical
transition rates to come up with the lateral rates. This averaging technique involves a

three-step procedure:

1. Compute the lower-half rate (R ) that will satisfy symmetry with the upper-
half rate (R,) for the vertical data using Eqt. 3.26.

2. Set the lower-half rate for the lateral direction (R ) equal to R *Rs)

3. Compute the upper-half rate for the lateral direction R, that will satisfy
symmetry with the new lower-half rate (R ) using Eqt. 3.26.

In addition to the averaging technique applied to the off-diagonal terms of the
lateral transition rates, an adjustment was made to the diagonal terms of the rate matrix.
It will be remembered that the diagonal terms correlate to the average mean lengths by
Eqt. 3.25. Generally in depositional patterns, lateral mean lengths are larger than their
counterparts. Therefore, the lateral mean length generally need to be increased by a
factor F prescribed by the user. Thisfactor F is equal to the ratio of the lateral mean
lengths/vertical mean lengths. If the mean length for category K increases by a factor F,
the corresponding transition rate will decrease by that same factor F according to Eqt.
3.25. And the row sum for category K must therefore decrease by the factor F according

to Eqt. 3.13. For example, given the vertical transition rate matrix R, if the lateral mean
lengths are all increased by afactor F =10.0, the resulting lateral rate matrix R, with the

ratio affect only (without the average technique applied) would be
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-0296 0092 0021 0.183 -00296 00092 0.0021 0.0183
R = 0026 -0103 0012 0065 | SR = 0.0026 -0.0103 0.0012 0.0065
0019 0133 -0262 0.109 00019 0.0133 -0.0262 0.0109

0037 0103 0025 -0.165 0.0037 0.0103 0.0025 -0.0165

Eqt. 3.27 illustrates the extrapolation of avertical transition rate matrix to alateral
transition rate matrix with application of both the averaging technique as well asthe

adjustment for the ratio of vertical to lateral average mean lengths.

R=[7 7 7T —=> Rz s Eqt. 3.27

Once the transition rate matrices have been defined for each of the three primary

directions, the three 1-D Markov chains can then be interpolated to any direction with

h 2 h 2 h 2
\rw\:\/(h_wjk,x] +(h—yrjk,y] +(h—2rjkl} /S A— Eqt. 3.28
4 4 4

where S denotes the background category, h,, h, and h, arethe x, yand z direction

componentsof h, =,/h? +h? +h? + . For the negative lag vector components, say h_,
entries from the rate matrix R_, corresponding to the opposite direction — x are defined

by

(e = [&J Fy - oo Eqt. 3.29
P;
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3.5 Eigensystem Analysis

MCMOD performs an eigensystem analysis because of the mathematical
requirements of developing a continuous-lag Markov chains as a geostatistical model of

gpatial variability. This process requires the following calculations:

. Evaluate the matrix exponential form of Markov chain give by Eqt. 3.4

. Evaluate the matrix logarithm of atransition probability matrix given
by Eqt. 3.30

. Convert adiscrete-lag Markov chain to a continuous-lag Markov chain

by combing Eqt. 3.4 and Eqt. 3.30

R T Eqt. 3.30

where R,isatransition rate matrix, T isatransition probability matrix, and Ahisthe
changeinthelaginthedirection ¢ . Equations 3.4 and 3.30 cannot be computed directly
from the matrix entries. Eigenvaulesfor both R, and T must be computed in the

anaysis.
3.6 Developing a Simulation

The generation of an indicator Kriging simulation via the transition probability

geostatistics approach involves three general steps:

1) Generate Markov chainsin the primary directions
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2) Extrapolate 1-D Markov chainsto a 3-D system

3) Establish aninitial simulation of material identifications based on the Markov

chains and then condition the simulation to borehole data.

In this research, we utilize the T-PROGS software package developed by Steven F. Carle.
The T-PROGS software consists of three separate algorithms to perform each of these

steps, GAMEAS, MCMOD, and TSIM respectively.

GAMEAS s an agorithm that processes borehole data and determines geologic
characteristics such as material proportions and transition probability curvesin agiven
direction. Typically, GAMEAS isonly applicable to vertical data because |lateral datais
too sparse for accurate results. Input for GAMEAS includes a parameter file, (Figure

3.7), that has site characteristics such as material names, lag identification, and statistical

information.

START OF PARAMETERS

data.eas finput file

123 Ix,y,z columns
44567 /nvar, var 1,2,3,...columns
-1 2. /vmin, vmax
datatpz.eas /output file

41 [# lags

0.3 /lag spacing

0.15 /lag tolerance

1 /ndir

0.0 90. 0.25 -90. 22.5 0.25 laz, daz, azbw; dip,...,...
16 [# of bivariate statistics
1111 /i, k, 11=tp

1211

1311

1411

2111

2211

2311

2411
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11
11
11
11
11
11
11
11

AR OWWWW
A WONEPPA,WDNPE

Figure 3.7 Sample parameter file for GAMEAS. (Carle, 1999)

Furthermore, GAMEAS requires a site data file that contains a material identification at

each X, y, and z location, as shown in Figure 3.8.

&
®

= easting

= northing

= €levation above mean sealevel
debris flow

floodplain

levee

channel

2132.8 2487.4 137.07
2132.8 2487.4 136.77
2132.8 2487.4 136.47
2132.8 2487.4 136.17
2132.8 2487.4 135.87
2132.8 2487.4 135.57
2132.8 2487.4 132.27
2132.8 2487.4 131.97
2576.2 2695.5 186.48
2576.2 2695.5 182.28
2576.2 2695.5 181.98
2576.2 2695.5 181.68
2576.2 2695.5 181.38
2576.2 2695.5 181.08
2576.2 2695.5 175.98

ARWNRPNX X ~NQD

POOOO0OO0OO0OO0OORRFROOOO
OFRPO0OO0OO0CORRROORRERE
0OC0O000000O00DO0O0O0OO
OCORRPRRPRRPROOODODODODOOOO

Figure 3.8 Sample datafile. (Carle, 1999)
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Hence, atypica application of GAMEAS would involve the creation of the parameter

and datafile from vertical borehole data.

GAMEAS parses through the borehole data and determines the proportions of
each material aswell as the transition relationships between each material. The
transition probability curves generated by GAMEAS provide a model from which
geologic data such as proportions, vertical mean lengths, and transition probability rates
can be extrapolated. The proportions, mean lengths, and transition rates assist in the
generation of vertical Markov chainsrequired in MCMOD and TSIM. Other geologic
information like embedded transition probabilities and frequencies can be inferred from
the borehole data. The vertical transition probability parameters generated with the aid of
GAMEAS can then be used to develop Markov chainsin the strike/dip directions. This
can be accomplished with application of Walther’s Law or utilization of more interpretive
methods of generating Markov chains like the maximum entropy approach or the
embedded transition approach. The computation of Markov chainsin the three primary

directions enables the generation of a 3-D Markov chain with MCMOD.

MCMOD isatility that converts three individual 1-D Markov chainsinto a
single 3-D Markov chain system. MCMOD also requires a parameter file that contains
some geologic and grid data and the definition of each 1-D Markov chain in the primary
directions (Figure 3.9). The definition of each Markov chain includes the method used to

generate the Markov chain and the corresponding matrix of rates.

4 [# of categories

0.565 0.19 0.179 /proportions

2 /background category
Inl/tp/memod1_21097.dbg /name of debugging file
Inl/tp/tpxyz1.bgr /output file for 3-D model
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Inl/tp/det.bgr f/output file for determinant

0.05 0.05 0.05 /determinant extent for 3-D model
3.0 10. 0.3 /dx, dy, dz for 3-D model
inltp/linitpxm.eas /X-direction output file

200 1. /X-direction: # lags, spacing

1 [1=r, 2=d, 3=etp, 4=€tf, 5=maxe
-0.125 0. -1 -1 /row 1 transition rates

0. 0. 0. 0. /row 2 transition rates

0.0042 0. -0.167 -1 /row 3 transition rates

0.004 O. 0.084 -0.1 /row 4 transition rates
inlap/linitpym.eas Y -direction output file

200 25 /Y -direction; # lags, spacing

1 [1=r, 2=d, 3=etp, 4=€tf, 5=maxe
-0.042 0. 0.0036 0.0022 /row 1 transition rates

0. 0. 0. 0. /row 2 transition rates

0.0013 O. -0.05 0.016 /row 3 transition rates

0.0008 0. 0.017 -0.02 /row 4 transition rates
Inlitp/linltpzm.eas /Z-direction output file

200 0.1 /Z-direction; # lags, spacing

2 [1=r, 2=d, 3=etp, 4=etf, 5=maxe
Inl/tp/data.eas /datafile

2 Nlag #

Figure 3.9 Sample parameter file for MCMOD (Carle, 1999)

The output from MCMOD is a3-D transition probability model file and a determinant

filethat areused in TSIM.

TSIM isautility that builds alternative, equally probable spatial distributions of a
random variable that honor hard data at specified locations. TSIM has two major
functions:. Firgt, it establishes an initial configuration with the sequential indicator
simulation (SIS) algorithm using a transition probability-based cokriging estimate. SIS
includes four basic steps at each “unsimulated” nodal location chosen sequentially along

arandom path.

1. A searchisconducted for nearby datalocations.

2. A local conditional probability distribution is estimated by cokriging values of
the nearby conditioning data and already “simulated” data.



3. A random number is chosen which determines the category from the
probability distribution.

4. The simulation is updated. (Carle, 1996)

These four steps are repeated at each “unsimulated” node visited along the random path,
with each cokriging estimate conditioned to the sequentially updated version of the

simulation.

After completing the SIS, TSIM iteratively improves the initial configuration by
the ssmulated quenching (zero-temperature annealing) algorithm. The quenching process
iteratively minimizes an objective function, O that computes the quality of the outcome

as compared to the measured data by

o:iii(tjk(h,)ms R TTL (L] 1T L Eqt. 3.31

!
[y
1!
LY
=
.ﬂ

Figure 3.10 illustrates the improvement realized from the quenching process.
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Figure 3.10 Vertica (z)-direction transition probabilities for models of spatial variability
with SIS only and with SIS and quenching. (Carle, 1996)

The two processes are mutually exclusive because the SIS step does not accurately honor
known data and the simulated quenching cannot function without an initial configuration.

The product of TSIM isa3-D array of material identification numbers corresponding to

46



the grid information entered in the parameter fileillustrated in Figure 3.11. The input to
TSIM includes the data file used in GAMEAS, a parameter file, and the two output files

of MCMOD: a 3-D transition probability model file and a determinant file.

4 /number of categories
0.066 0.565 0.19 0.179 /proportions
Inl/sim/simxyz.bgr /output file

1 /output format: 1 = binary, 2 = ascii
1 /debugging level
tpsim.dbg /debugging file

4175 /seed

1 /number of realizations
1966.3 -20 3. /xcenter, nx+, xsiz
30235 -20 10.0 lycenter, ny+, ysiz
142.07 -20 0.3 [zcenter, nz+, zsiz

14 /ndmin, ndmax

1 libasis: 0=cov, 1=tp
0.01 /wratio
Inl/tp/tpxyz.bgr [trans. Prob. Model file
Inl/tp/det.bgr /determinant file
.JlInl/data/data.eas /input data file

0. 0. /azimuths: coord, true
0. 0. [dip: coord, true
junkaz. bgr fazimuth int*1 file
junkdip.bgr [dipint*1file

4 0.0001 -1 /maxit; tol; -1 =nodcl, 1 =lagl
04 /limit by determinant

Figure 3.11 Sample TSIM parameter file. (Carle, 1999)

Thus the final product of these three algorithms (GAMEAS, MCMOD, and TSIM) isa
set of N 3-D arrays of stochastically-generated geologic units that honor known data.
Sample applications of the T-PROGS software will be illustrated in Chapter 6—Case

Study.
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4 INDICATOR ARRAYSTO HUF ARRAYS

Using transition probability geostatistics with MODFLOW models resultsin two
basic limitations. First, the underlying indicator Kriging equations used by the T-PROGS
software are formulated such that the MODFLOW grid must have uniform row, column,
and layer widths. The row width can be different from the column width, but each row
must have the same width. Thisresultsin auniform orthogonal grid. While
MODFLOW grids are orthogonal in x and y, the layer thicknessis allowed to vary on a
cell by cell basis. Thismakesit possible for the layer boundaries to accurately model the
ground surface and the tops and bottoms of aquifer units. If apurely orthogonal gridis
used, irregular internal and external layer boundaries must be simulated in a stair-step
fashion either by varying material properties or by activating/inactivating cells viathe
IBOUND array. A second limitation isthat in order to get ahigh level of detail in the
simulated heterogeneity, the grid cell dimensions are generally kept quite small. This can
result in difficultiesin the vertical dimension. The large number of layers with small
layer thicknesses near the top of the model generally ensures that many of the cellsin this
region will be at or above the computed water table elevation (for simulations involving
unconfined aquifers). Asaresult, these cells will undergo many of the numerical
instabilities and increased computational effort issues associated with cell wetting and

drying.
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4.1 Hydrogeologic Unit Flow (HUF) Package

The new Hydrogeologic Unit Flow (HUF) package is an alternative to the Block-
Centered Flow (BCF Package) and the Layer Property Flow (LPF Package) in
MODFLOW 2000. Each of these packagesis used to compute cell-to-cell conductances
from the layer geometry and aquifer properties. These packages manage the flow
parameters required to solve the governing flow equation in MODFLOW. The HUF
algorithm was developed by Evan Anderman (Anderman, 2000). This package includes
a set of arrays defining the model stratigraphy in agrid independent fashion. The
stratigraphy data are defined using a set of elevation and thickness arrays. These arrays
have the same number of rows and columns as the MODFLOW grid but are independent
of the MODFLOW grid in the vertical direction. Thefirst array defines the top elevation
of the model. The remaining arrays define the thicknesses of a series of hydrogeologic
units, starting at the top and progressing to the bottom of the model. For each array of
thicknesses, many of the entriesin the array may be zero. This makesit possible to
simulate complex heterogeneity, including pinchouts and embedded lenses that would be
difficult to ssimulate with the LPF and BCF packages. When MODFLOW runs, it parses
through each MODFLOW grid cell and determines the percentage of each HUF layer
with its corresponding hydraulic conductivity and computes an equivalent hydraulic
conductivity and appliesit to the entire MODFLOW grid cell. The hydraulic governing

equation computes the heads based on these equivalent hydraulic conductivities.

The HUF package has some unique advantages over the BCF and L PF packages

in MODFLOW. First, property arrayscan  be defined independently of the grid.
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Therefore, soil heterogeneity and detail can be maintained in the model without
increasing the cell density in the grid. This reduces computational time and memory
requirements. Furthermore, representing detailed soil heterogeneity with a grid approach
would require thin layers. Thin layers near the top of the grid poses a problem in
MODFLOW because of the potential for the cellsin those layersto go dry. If thecellsgo
dry at any time while MODFLOW is calculating a solution, the cells become inactive and
remain dry. Therefore, cells that go dry might not accurately represent the hydraulic head
inthat cell. MODFLOW hasa*cell rewetting” option that rewets cells after going dry,

but this presents more complexity in the solution.

4.2 T-PROGStoHUF Conversion Algorithm

The primary goal of my research was to develop an algorithm for merging output
from the T-PROGS software to input data for the HUF package. Using this algorithm, it
is possible to generate stochastic indicator simulations of a study area with or without
borehole data and read them into HUF layers, thus combining the benefits of the HUF
package, transition probability geostatistics, and stochastic ssmulations. The basic
approach used by the algorithm is to overlay a dense background grid on the MODFLOW
grid and run T-PROGS on the background grid. A set of HUF arraysis then extracted
from the background grid for use with the MODFLOW model. The main steps of the

algorithm are as follows:

1. Create aMODFLOW grid.

2. Create a Background grid with a higher grid density in the vertical
direction relative to the MODFLOW grid.
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3. Run T-PROGS to get a set of indicator arrays on the background grid.

4, Convert the T-PROGS output from the background grid to the HUF input
arrays.

The end result of this conversion processis N sets of HUF input arrays, each array
corresponding to one 3D indicator array from the T-PROGS simulation. These sets can
then be used as input to a stochastic flow simulation. Each of these steps will now be

described in more detail .

4.2.1 Create a MODFLOW Grid

Thefirst step isto create aMODFLOW grid with the desired number of layers.
The user performsthis step, but the remainder of the steps are performed internally. The
layer elevations are interpolated to match the aquifer boundaries. The row and column
widths are uniform but the layer thicknesses may vary from cell to cell. The MODFLOW

grid can have curvilinear layer boundaries.

4.2.2 Create a Background Grid

The next step isto create a background grid that encompasses the MODFLOW
grid. Therows and columns of the background grid match the MODFLOW grid but the
layer thicknesses are uniform and relatively thin, resulting in amuch greater number of
layers than the MODFLOW grid. The user specifies the number of layers incorporated
into the background grid. The two grids areidentical in plan view, but in side view the
background grid encompasses an area that bounds the MODFLOW grid. If the

MODFLOW grid is curvilinear, then the background grid will potentialy have cells that
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exist above and below the MODFLOW grid in agiven column. This becomes important
when the indicator arrays generated with T-PROGS are interpolated to the MODFLOW

grid.

4.2.3 Run T-PROGS

Once the background grid is generated, a T-PROGS simulation is performed to
get aset of indicator arrays on the background grid. A brief review of this processis
given below. A detailed description of this processis given in Appendix B—GMS/T-
PROGS Interface.

1 Initialize a T-PROGS simulation. Select materialsincluded in the

simulation (if boreholes exist, materials are inherited from the borehol es)
and the background material.

2. Define the vertical Markov chain with geologic intuition. If borehole data
exist, the T-PROGS utility, GAMEAS can aid in this process.

3. Definethe lateral (strike/dip) Markov chains from the vertical Markov
chain.

4, Specify the number of layersin the background grid and run T-PROGS
with the HUF option selected.

4.2.4 Convert the T-PROGS Output

Once the indicator data have been generated on the background grid, each of the
indicator arraysis transferred from the background grid to a set of HUF
elevation/thickness arrays. As mentioned above, the row/column configuration is
identical for both grids. Each column of indicator data corresponds to a column in the
MODFLOW grid. Therefore, each column of indicator datais applied to its

corresponding column in the MODFLOW grid with the following processillustrated with
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Figure4.1. The colors correlate to HUF arrays defined with hydrogeologic unitsin a

background grid, and the MODFLOW grid is outlined with black cells.

Top Elevation 3=
Thickness &=

Top Elgvation=2=
Thickness<z=

HUF 2 HUF 1

Occurrence #1

Occurrence #2

Material

Clean_Sand
Silty_er_Clayey_Fine_Sand
Silty_Clay

Figure 4.1 Illustration of T-PROGS --> HUF.

Consider thefirst grid column from the left in Figure 4.1. Since the top of the

background grid in aparticular column may not be the same as the MODFLOW grid, the
elevation of the top of the MODFLOW grid isidentified in the background grid, and the
material identification is extracted at that location (Silty_or_Clayey Fine Sandinthis
case). It can be seen from Figure 4.1 that multiple instances of a material can be
encountered in asingle column (Silty_Clay and Silty_or_Clayey Fine Sand). Theindex
of occurrence of each material is stored because the index of occurrence and the material
identifies the HUF layer at each location in the MODFLOW grid. The HUF layer is
retrieved or created based on the material identification and index of occurrence. The
consecutive sequence of cells with acommon material is then converted to an entry into
the appropriate HUF thickness array, and the top elevation of those consecutive cellsis
entered in the HUF top elevation array. When a change in the material assignment is

found (Clean_Sand in this case), the processis repeated. This processis repeated until
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the bottom elevation of the MODFLOW grid is encountered. Once again, this bottom
elevation might not correlate with the bottom elevation of the background grid. This

entire process is then repeated for the remaining columns.

Figure 4.2 illustrates the side view of a MODFLOW grid with four curvilinear
layers. The background grid used for the T-PROGS algorithm had the same plan view as
the MODFLOW grid, but it contained twenty vertical layers. The different colors
correlate to material zones that were mapped to different HUF layers generated by the
process described above. Figure 4.2 demonstrates the ability to define soil heterogeneity
independent of the MODFLOW grid. It also demonstrates the ability to use a curvilinear
MODFLOW grid. The vertical scale has been exaggerated by afactor of 5.0 in this

figure.

Materials
Clean_Sand
Sand_w/!_fines
Sitt

Clay

=

Figure 4.2 Sample HUF arrays for a four-layer grid.

After populating the HUF package in MODFLOW with the output from T-PROGS,
hydraulic parameters like vertical and horizontal conductivity are assigned to each

material. Head solutions are then generated with MODFLOW. The combination of T-



PROGS and the new HUF package in MODFLOW 2000 allows users to maintain detail
in soil heterogeneity while reducing complexity, memory requirements, and

computational time by minimizing the number of grid cells.
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5 SINGLELAYER MODFLOW MODELS

Although MODFLOW is athree-dimensional model, a magjority of the
MODFLOW models constructed by typical users are 2D models consisting of one model
layer. There are several reasons why 2D models are so common. One reason is that
many of these models are regional models where the aquifer thicknessis very small
compared to the lateral extent of the model. Asaresult, the flow directions are primarily
horizontal and little improvement is gained by adding multiple layers to the model. Even
with local scale models, the aquifer thickness is often small enough that one-layer models
are considered adequate. 2D models are also attractive due to the smplicity of the model
increased computational efficiency. One of the problems associated with using multiple
layers for MODFLOW models with unconfined aguifersis that as the water table
fluctuates, the upper cells may go dry. These cells will not rewet even if the water table
subsequently rises, unless the rewetting option has been selected in the flow package

(BCF, LPF, or HUF). The rewetting issues can often be avoided with a one-layer model.

When developing a one-layer model, the modeler must determine how to
distribute the hydraulic conductivity values within the layer. One option isto assume a
homogenous aquifer; thisistypically a gross over-smplification since aquifers are
usually highly heterogeneous. Therefore, acommon approach is to delineate zones of

hydraulic conductivity by examining the subsurface stratigraphic data. In many cases,
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these data are in the form of borehole logs. These borehole logs often exhibit
substantial heterogeneity and don’t always exhibit definitive trends between adjacent
boreholes. Furthermore, the boreholes are often clustered with large regions of the model
lacking any borehole data. The modeler then faces a difficult task of trying to determine
arationa approach to delineating two-dimensional zones of hydraulic conductivity based

on complex 3D borehole data.

As part of thisresearch, we developed a technique for developing 2D zones of
hydraulic conductivity from borehole logs using transition probability geostatistics. The
technique is simple, fast, and preserves proportions and trends exhibited by the borehole

data.

5.1 Description of Algorithm

The 2D T-PROGS approach provides a simple, rational approach to representing
borehole datain a one-layer, 3-D ground water model. The T-PROGS algorithm
accurately represents the spatial variability trends in the borehole with a 3-D Markov
chain system developed by GAMEAS and MCMOD. GAMEAS and MCMQOD are used
to develop 1-D Markov chains in the primary directions: vertical, strike, and dip. The
Markov chains mathematically represent the heterogeneity in the boreholes. The process
up to this point isidentical for asingle or multiple layer model. Then, the algorithm
parses through each borehole and computes a predominant material asillustrated in
Figure5.1. Intheinput fileto TSIM, asingle record is written out for each borehole.

Thisrecord includes the x and y coordinates and a z coordinate corresponding to the
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average grid elevation. The z coordinate is not critical in this case since the interpolation
is performed entirely in the xy plane. For the category data, a1 isassigned to the column

that correlates to its predominant material.

Data

-

x = strike

¥ E dip

A = glevation

66 = Clean 3and

67 = Zand w/ fines

65 = S3ilt

3= = Clay

SG05.9325947746 235.49310916799 o.5 0 1 ) )
1417.9793150903 S576.45151515065 o.5 0 1 ) )
1359. 6251520497 452 . 22296477063 o.5 0 ) ) 1
1354.9372347225 389.27654432545 o.5 0 ) ) 1
13358.01756391585 293, 67577502163 o.5 0 ) ) 1
1406.4565250045 579, 67546690645 o.5 0 1 ) )
13758.5744959555 452 . 1649444655222 o.5 0 ) ) 1
1362.9725105615 382.37749520571 o.5 0 ) ) 1
1342.112547496 284, 19605961265 o.5 0 ) ) 1
1413 .4745425453 552, 67796559309 0.5 1 ) ) )
1404,.3222176013 554,.41532694301 o.5 0 1 ) )
1406.03269587637 S525.37334266456 o.5 0 1 ) )
1398.0210373393 530,1351695742 o.5 0 1 ) )
13958.6116575279 S503.53467532929 o.5 0 ) ) 1
1390.7362323795 506, 145154953626 o.5 0 ) ) 1
1439.4370915416 S573.07076185611 o.5 0 1 ) )
1435.46242 56505 S565.03580502396 o.5 0 1 ) )
1411.055521404 469, 17745004541 o.5 0 ) ) 1

Figure 5.1 Datafile for a one-layer model.

When TSIM runs, the predominant material for each boreholeis assigned to its
corresponding location in the one-layer grid, and during the quenching process,

simulations are conditioned to those data points. Although the simulation can honor the
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gpatial variability evident in the entire borehole, it can only condition to one material at
each borehole location. With our algorithm, this material always corresponds to the
predominant material in the borehole. The materials assigned to the other cells honor the
proportion, transition, and juxta-positioning tendencies inherent in the borehol e data.

Once again, the output from this algorithm can be utilized for stochastic simulations.

Figure 5.2 illustrates an example of the 2D approach. The boreholes are labeled
with their corresponding predominant material. The figureillustrates the ability to

accurately condition to known borehole data.

hiaterials

Clean_sand
Sitty_or_Clayey_Fine_Sand
Sitty_Clay

59



Figure 5.2 3D borehole condensed into a one-layer model using the 2D approach.
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6 CASE STUDIES

This chapter describes a case study used to illustrate the new a gorithms described
in the previous two chapters. The case study includes indicator simulations generated
with T-PROGS, MODFLOW head solutions, and particle tracking analyses. The case
study demonstrates the application of the new algorithmsin the context of a stochastic
simulation. Four different methods will illustrate this application: 3-D orthogonal grid,

HUF arrays, single layer grid, and indicator simulation in the absence of borehole data.

6.1 Site Description

The site selected to illustrate the transition probability approach of MODFLOW
modeling is the Longhorn Army Ammunition Plant (LHAAP) in Eastern Texas. The
plant is inactive now, but during its active status, it produced, distributed, and
decommissioned various types of munitions. These processes contaminated the surface
and groundwater hydrologic systems with a mixture of chemicals from solvents and

oxidizersto explosives.

Since the purpose of this case study is to demonstrate the application of stochastic
generation of subsurface stratigraphy and not to perform a comprehensive analysis of the

groundwater transport at this site, some general assumptions were made about the site

conditions and model construction. A detailed, rigorous groundwater and surface water
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modeling study was performed by the U.S. Army Engineer Waterways Experiment
Station (WES). The borehole data and general hydrologic properties of the site were

extracted from the WES model provided by Cary Talbot (REFERENCE).

6.2 Description of Model

Theentire LHAAP siteisillustrated in Figure 6.1. The site covers approximately

8,420 acres.

LHAAP Study Area

Local Study ﬁre_a

R 1ol o9
Iy

Figure 6.1 LHAAP and "Local study area’. The dots represent boreholes.

The areamodeled in this case study is alocal scale model covering approximately 40

acres near the center of the LHAAP site indicated by the small rectangular area on Figure
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6.1. The technique described in thisthesisis more applicable to local scale models than
to large-scale, regional models. In order for the T-PROGS software to accurately model
the transition trends, the grid cells used in MODFLOW must be smaller than the average
lens thickness of the materials being modeled. If the grid cells are larger than the average
material lens thicknesses, the transition trends are not developed, and while the material
proportions are correct, the material assigned to each cell israndom. With thisin mind,
the subset selected for the local study areawas chosen because it contained adequate
borehole data to develop transition trends, and it was small enough to create cells that

were smaller than the average lens lengths but not computationally unrealistic.

There are 77 boreholes inside the local study area. The borehole logs originally
contained 60 different materials defined by the Unified Soil Classification System

included in Table 6.1.

Table 6.1 Original materials in site boreholes.

Materials

CH CLCL FI LI MLSP | SCCL | SMCL | SP SPSP

CHCH | CLLI GC MH OH | SCML |[SMGM | SPCL | SW

CHCL | CLML |GCGC |[MHMH| OL | SCSC | SMML | SPFI |SWSM

CHSC | CLOL | GM ML | OLCL | SCSM | SMSC | SPGP | TS

CHSM | CLPT |GMGM| MLCL PT | SCSP | SMSM | SPML
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CL CLSC | GP |MLMH| PV SH | SMSP | SPSC

CLCH [CLSM | GW |MLSM | SC SM | SMSW | SPSM

In order to make the problem manageable with the transition probability
approach, the materials were condensed down to four primary materials: clean sand, sand
with fines, clay, and silt. The proportions for each material extracted from the boreholes

inside the local study area arelisted in Table 6.2.

Table 6.2 Materialsin the local study area with corresponding proportions and hydraulic
conductivity.

Material Proportion | Horizontal Conductivity | Vertical Conductivity
(ft/d) (ft/d)

Clean Sand 9% 230 115

Sand with Fines 51% 12 6

Silt 6% 2 1

Clay 34% 0.03 0.015

An extraction well was introduced into the site that pumped an average of 300 GPD. The
well was screened in different layers depending on the number of layersin the model.
However, the plan-view location of the well illustrated in Figure 6.2 by the “X” was
constant in all the sample models. Specified head boundaries were assigned to the east-
west boundaries, and no-flow boundaries marked the north-south boundaries. Heads
were assigned to produce awater flow pattern from west to east. Figure 6.2 illustrates the

specified head for the single layer model.
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are 1,674 feet in the strike direction and 1,031 feet in the dip. The grid is partitioned into

correlate to cell lengths and widths of 24 and 20 feet respectively. Thisisimportant

because the average material lens lengths must be less than the cell dimensionsin the

corresponding direction to develop any meaningful transition trends. The average lens
65

The plan-view grid dimensions are the same in all the sample models. The dimensions
70 divisionsin the strike direction and 50 in the dip direction. These dimensions

Figure 6.2 Plan view layout of the grid. Dots represent borehole locations.
lengths for the strike/dip and vertical directions areillustrated in Table 6.3.

Table 6.3 Strike/dip and vertical lens lengths for each material.



Material

Strike/Dip Lens
Length (ft)

Vertical Lens
Length (ft)

Clean Sand 59 5.9
Sand with Fines 132 13.2
Silt 39 3.9
Clay 73 7.3

6.2.1 Transition Trends

The same vertical, strike, and dip transition trends were used for all three of the
models. 3-D orthogonal grid, single layer grid, and HUF arrays. Markov chains were
developed in the vertical, strike, and dip directions with the assistance of the GAMEAS
utility inside T-PROGS. Figure 6.3 illustrates the transition datain the vertical direction

used to develop the Markov chains. A relatively accurate fit exists between the measured

curve and the Markov chain curve.
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Figure 6.3 Vertical transition probability curves.

The average vertical lens lengths extracted from these curves for each material are listed
in Table 6.3. Thelateral (strike and dip) transition probability curves have the same

shape, but the average lens lengths are ten times the lengths of their vertical counterparts.

6.3 3-D Orthogonal Grid
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The first sample application involves a twenty-layer orthogonal grid of the subset
areaillustrated above. The purpose of this exampleisto illustrate the application of the
transition probability approach in the general 3D case, as opposed to the HUF method
developed through this research. For this case, the extraction well is screened in layer 15.
T-PROGS requires uniform cell widths, lengths, and heights for a multi-layer model.

The grid dimensionsin the vertical direction are 86 feet partitioned into twenty layers.
These dimensions correlate to cell dimensions of 2.9 feet in the vertical direction. Thisis
important because the average material lens lengths must be less than the cell dimensions
in the corresponding direction to develop any meaningful transition trends. The average

vertical lenslengths for each material areillustrated in Table 6.3.

A 3D Markov chain was developed with MCMOD. Seventy-five realizations
were generated with TSIM. Figure 6.4 and Figure 6.5 display an oblique view of two of
therealizations. The vertical scale has been exaggerated by afactor 5.0 in each of the

figures.
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Figure 6.4 Oblique view of the realization #1 with cells filled with material colors.
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MODFLOW head solutions for the top layer of each grid areillustrated in Figure 6.6 and
Figure 6.7 (black contours). In addition, a particle tracking analysis was performed on

each solution with MODPATH (blue lines).

Materials

Sand_w/_fines

Clay
Clean_Sand

Sitt

Figure 6.6 Head (black) and particle flow line (blue) solution for realization #1.
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Materials

Sandd_wi_fines
Clay
Clean_Sand
Silt

Figure 6.7 Head (black) and particle flow line (blue) solution for realization #2.

Note the differences in the pathlines for the two samples shown in Figure 6.6 and
Figure 6.7. One of the benefits of this approach is that the model realistically portrays
complex capture zones resulting from aquifer heterogeneity. Thisisfurther illustrated by

the model cross-sections shown in Figure 6.8 and Figure 6.9.
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Materialz

Sand_wi_fines
Clay

TZ Clean_Sand
St

Figure 6.8 Side view of flow lines and water table.

Sand_w/_fines
Clay

Iz Clean_Sang
Sitt

Figure 6.9 Side view of flow lines and water table.

As part of the particle tracking analysis, a 3D probabilistic capture zone was devel oped
from the MODFLOW solutionsin which the cell at the well was not dry. Some of the
realizations devel oped by T-PROGS assigned clay to the cellsincluding and adjacent to
thewell. For some of the realizations, the well could not extract the quantity of water

specified by the pumping rate with the given conductivity of clay. Therefore, the cell
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went dry. In fifty-one of the seventy-five solutions, the cell including the well did not go
dry, and those solutions were used in the probabilistic capture zone analysis. A 3D
probabilistic capture zone is generated by placing a particle at each cell center of the grid
for each ssimulation and tracking the cell backward in time to determine if it terminates at
the cell. The particle tracking analysis was conducted with MODPATH (Pollock, 1994).
The probability that the particle at the cell reaches the well is computed by dividing the
number of simulations in which the particle from that cell reached the well by the total
number of simulations. The probability at each cell isthen contoured with iso-surfaces. A
set of iso-surfaces developed for different probabilities of captureisillustrated in Figure

6.10-Figure 6.13.

Figure 6.10 3D capture zone for a probability shell equal to 10%.
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Figure 6.12 3D capture zone for a probability shell equal to 50%.
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Figure 6.13 3D capture zone for a probability shell equal to 70%.

A cutaway of the iso-surfaces was also generated to illustrate the interior configuration of

the capture zone (Figure 6.14 and Figure 6.15).

Figure 6.14 3D cutaway of the interior of the capture zone with iso-surfaces capped.
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Figure 6.15 3D cutaway of the interior of the capture zone with iso-surfaces not capped.

6.4 SingleLayer Model

The grid for the single layer model has similar plan-view dimensions as the 3D
case, but the grid has only one layer in the vertical direction. The 2D Approach outlined
in Chapter 6 was used when conditioning the realizations to the borehole data. Ninety
realizations were developed for the local study area. Two of the realizations are
illustrated in Figure 6.16 and Figure 6.17. The cellsarefilled with their corresponding
material identification color. The heads computed by MODFLOW are also contoured

(black), and the flow lines computed by MODPATH are displayed in blue.
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aterials
Sand_w/_fines
Clay
Clean_Sand
Sitt

Figure 6.16 Realization #1 for 2D approach with MODFLOW and MODPATH
solutions.
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Materials

Sand_w/_fines
Clay
Clean_Sand
Sitt

Figure 6.17 Realization #2 for 2D approach with MODFLOW and MODPATH
solutions.

A visua analysis of the material distribution in each of these realizations confirms the
material proportions listed in Table 6.2 and the impact of variability in soil stratigraphy
on head and transport behavior. The pathlines clearly show channeling effects and there
isalarge differencein the well capture zone, even though both cases are conditioned to

the same borehol e data.

In addition to the head solutions, a 2D probabilistic capture zone illustrated in

Figure 6.18 was computed for those solutions in which the cell with the well assigned to
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it did not go dry. Eighty-three of the ninety solutions were used in the capture zone
analysis. The 2D probabilistic capture zone differs from the 3D capture zone described
above. For the 2D case, particles are distributed at the water table surface for every cell
instead of the cell center. A backward particle tracking analysis is then performed and
the probability of capture is computed the same way asin the 3D case. The contours

correlate to the probability of a particle being captured by the well marked with an “X”.

Probrability

Figure 6.18 2D probabilistic capture zone for the well.

6.5 HUF Arrays
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The grid for the HUF case has similar plan-view dimensions as the 2D and 3D
case. However, the grid used to model the HUF array application has four layers.
Furthermore, the grid has uniform row and column dimensions, but the layer dimensions
vary throughout the grid and are curvilinear as evident in Figure 6.19. The extraction
well is screened in layer three. The approach outlined in Chapter 4 was used to develop
realizations of HUF arrays with the T-PROGS software. Ninety realizations were
developed for the local study area. Two of those redlizations are illustrated in Figure
6.19 and Figure 6.20. The effect of the soil variability is demonstrated by the flow lines
and head contours. The cells are filled with the material identification color

corresponding to the hydrogeologic unit defined by the HUF arrays.

Materialz
Clean_Sand
Sand_w/_fines
Sitt

TZ Clay

Figure 6.19 Realization #1 for HUF approach with MODFLOW solutions (side view).
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Figure 6.20 Realization #2 for HUF approach with MODFLOW solutions (side view).
The plan view figures (Figure 6.21 and Figure 6.22), illustrate the heads computed by

MODFLOW contoured in black and the flow lines computed by MODPATH in blue.
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Figure 6.21 Realization #1 for HUF approach with MODFLOW and MODPATH

solutions (plan view)




Figure 6.22 Realization #2 for HUF approach with MODFLOW and MODPATH

solutions (plan view).

In addition to the head solutions, a probabilistic capture zone was computed for

al thesmulations. A set of iso-surfaces corresponding to differing values of probability

of capture was developed for the zoneisillustrated in Figure 6.23-Figure 6.26.
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Figure 6.23 HUF capture zone for a probability shell equal to 10%.
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Figure 6.24 HUF capture zone for a probability shell equal to 20%.
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Figure 6.25 HUF capture zone for a probability shell equal to 30%.
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Figure 6.26 HUF capture zone for a probability shell equal to 40%.

A cutaway of the iso-surfaces was also generated to illustrate the interior configuration of

the capture zone (Figure 6.27).



Figure 6.27 HUF cutaway of the interior of the capture zone with iso-surfaces capped.
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7 CONCLUSION

Sail stratigraphy in ground water modeling is typically defined by large,
homogeneous polygonal zones. However, actual soil deposition is dominated by small
lenses, and soil parameters such as hydraulic conductivity can vary by two orders of
magnitude or more inside aten foot radius. Various stochastic simulators exist to
generate N equally probable realizations of variability in soil stratigraphy. Transition
probability geostatistics for indicator simulation presents an attractive method of
generating soil stratigraphy from typical site characterization data such as boreholes.
Some unique qualities of the transition probability approach make it the candidate of
choice. Firgt, sinceitisatype of indicator simulation, this algorithm operates on discrete
parameters, which correlates well with geologic facies. It is conducive to stochastic
inverse modeling like PEST and other models. Stochastic realizations can be conditioned
to site dataintroduced by boreholes. The transition probability approach aso has some
unique advantages over the traditional Kriging methods like cross-variograms. The
transition probability approach provides a conceptual framework for incorporating
geologic interpretations such as materia proportions, average lens lengths, background
material, and depositional patternsinto the model. It also enhances the development of
asymmetric depositional patterns like fining-upwards or radial morphology. In addition,
the transition probability approach enhances stratigraphic development in lateral

directions where the absence of adequate borehole data makes curve fitting unrealistic. A

87






transition probability software package, T-PROGS, developed by Steven F. Carle was the
tool used to incorporate stochastic stratigraphy simulation into MODFLOW with the
Department of Defense Groundwater Modeling System (GMS) interface.

The indicator arrays generated by the transition probability simulation can be
converted into material identification arrays for use in the Layer Property Flow (LPF)
package in MODFLOW 2000. The material set approach presents a rational way of
generating soil stratigraphy laterally between borehole data. Furthermore, material sets
can be used to assign three dimensional borehole datato a one-layer model. The
indicator arrays generated by the transition probability simulation can aso be converted
into layer elevation and thickness arrays for use with the new Hydrogeologic Unit Flow
(HUF) package in MODFLOW 2000. This makesit possible to preserve complex
heterogeneity while using reasonably sized grids. This approach can aso be used to
generate multiple realizations of aquifer zonation for MODFLOW simulations involving
one-layer models.

The stochastic tools described above enable MODFLOW users to generate soil
stratigraphy conceptually with geologic knowledge in the presence of sparse or even no
borehole data. These tools aso enable more realistic modeling of local transport
dominated by low and high conductivity lenses. Furthermore, the compatibility of the
transition probability approach with stochastic inverse modeling enables the use of an
automated parameter estimation engine such as PEST to optimize the parameter values
associated with the material zones generated for each model instance. The end result of
this processis that each of the N model runsis calibrated to field observed heads and

flows. Thisprovides a greater confidence in the probabilistic model predictions.
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Additional topics of research that would extend and improve the application of the
transition probability approach in MODFLOW exist. One topic of research being
pursued currently by Jonathan Green and Dr. Norman Jones in the Environmental
Modeling Research Lab (EMRL) at Brigham Y oung University is probabilistic capture
zones generated from multiple MODFLOW head solutions based on T-PROGS outpuit.
Although a description of the application of the transition probability approach has been
given in thisthese, it has not been demonstrated that this approach accurately models
aquifer behavior. Therefore, further research is recommended to ascertain the validity of
stochastic smulations. Furthermore, additional research could demonstrate if a higher
degree of detail correlatesto a more accurate model of aquifer behavior. Another issue
that arises with stochastic simulations of soil stratigraphy involves modeling wells. If a
well isincluded in amodel and a stochastic simulator is used to generate realizations of
soil stratigraphy, it islikely that alow-conductivity material will populate the cells
surrounding the well. This situation creates a potential for the cells to go dry around the
well. Infield conditions, wells are devel oped to flush out fines surrounding the well,
which increases the hydraulic conductivity around the well. Further research could
address this dilemma and potentially develop a method of simulating a developed well in

MODFLOW.
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APPENDIXB GMST-PROGSINTERFACE

As part of this research, a graphical user interface to the T-PROGS software was
developed in the Department of Defense Groundwater Modeling System (GMS). The
interface is contained in the T-PROGS Menu in the Borehole Module. The GMS
interface takes a five-step approach to generating spatial realizations of geologic units.
Algorithms from the T-PROGS software are used intermittently throughout those five
steps. If the user has not initialized a T-PROGS simulation, the five steps are
accomplished in awizard with each step automatically following the previous step.
Otherwise, each step can be completed individually. These five steps areillustrated in

Figure BB and include:

1) Genera options

2) Vertica Markov chain definition

3) Strike Markov chain definition

4) Dip Markov chain definition

5) Simulation generation

These options become initialized when the New Smulation command is selected. They

are dimmed when the current ssmulation is deleted.
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T-PROGS

M ew Simulation...
Delete Simulation
Options. ..

Yertical [£] Markow Chains. .
Strike [#] Markow Chains...
Dip [v] Markow Chains...
Fun TSIM...

Figure BB T-PROGS menu commands.

B.1 BuildingaGrid

A prerequisite for building T-PROGS data is athree-dimensional grid. The
indicator arrays generated by the T-PROGS algorithm are interpolated to a grid, and
therefore, agrid must exist. The T-PROGS algorithm is compatible with two types of
grid. If the option to generate material sets for amulti-layer grid is selected, the grid
must be orthogonal with uniform row, column, and layer dimensions. The row
dimensions can be different from the column dimensions, but the row dimensions must
be the same throughout the grid. The same conditions exist for the columns and layers.

If the option to generate HUF arrays or material setsfor aone-layer grid is selected, the
grid must have uniform row and column widths, but cells can have varying Z dimensions
and a curvilinear geometry.

B.2 General Options

Thefirst step in the GM S interface includes the definition of general T-PROGS
options. When a user selects the command to initialize a T-PROGS simulation, New
Smulation, the dialog illustrated in Figure CC or Figure DD appears. If boreholes do not

exist in the model, an unconditioned simulation will be generated. In this case, the user
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selects the materials to be used and a corresponding background material. The “Materials
Editor” button enables usersto quickly create, delete, or rename materials and the

materia list is automatically regenerated.

Markov Chain Options |
— Materialz
b atenial Select Material |Backgmund
material_1 Ed I
rmaterial_# v Cll
material 3 |V -
material_4 r 'l

Azimuth IEI.EI bd atenialz Editor... |

™ | relude Boreholes Mutside of Gid Boundan:

I et I Cancel |

Figure CC Markov chain general options dialog without borehole data.

If boreholes do exist in the model, the list of materialsis automatically generated
asin Figure DD. Sincethislist isinherited from the boreholes, the user cannot alter the
list of materials and so the Materials Editor button isdimmed. In addition to generating
the material list, the code parses through the boreholes to compute the most dominant
material and automatically selects the default background material. However, the user
can change the background material. It is possible that the grid defined by the user does
not circumscribe all of the borehole data. In this case, the user can opt to use all the

boreholes in the model to generate the transition trends. Or the user can only use the

95



boreholes inside the grid boundary for generating the transition trends. The user specifies
this option with the button, “ Include Boreholes Outside of Grid Boundary.” The use of

the boreholes inside the grid boundary is the default.

Markov Chain Options

— M aterialz
b atenal From Boreholes | Background |
Clean_Sa... Ed r
Sand_wd.. [V v
Sil Ikd r
Clay [V r

Azimuth IEI.EI i atenials Editar.. |

[ Include Boreholes Outside of Gid Boundary

Cancel |

Figure DD Markov chain general options dialog with borehole data.

The user aso enters an azimuth in thisdialog. The azimuth isillustrated in Figure
EEand determines the orientation of the primary directions of the depositional trends in
the strike/dip directions. These trends generally are aligned with the primary directions
of horizontal flow in the aquifer. Theoreticaly, the azimuth can be oriented
independently from the grid orientation. However, in practice, if the grid and azimuth
orientations are offset by more than about 40 degrees, checkerboard patterns appear in the
indicator array results. Hence, the azimuth orientation is set equal to the grid orientation

by default. However, the grid angle is defined counterclockwise asillustrated in Figure
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FF, and the azimuth angle is clockwise as illustrated in Figure EE. Therefore, if the grid

angle is 40 degrees, then the azimuth angle will be —40 degrees by default.
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~ Figure FF Grid angle orientation.
+

Figure EE Definition of azimuth in
T-PROGS algorithm

One limitation for both the cases with and without boreholesis that a maximum of
five materials can be used in the T-PROGS agorithm. This limitation was imposed to
keep the data processing and user-interface reasonably smple. Although five materials
present a limitation, borehole data can generally be easily condensed down to five or
fewer materials. Furthermore since thisis a stochastic approach, which is based on
probability, the detail generated with numerous materialsisrarely justifiable anyway. In
addition, as the number of materialsincrease, the ratio of processtime to detail becomes

inefficient.
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B.3 Vertical (Z) Markov Chains

Once the general options are input, the Vertical (Z) Markov Chains dialog
illustrated in Figure GG appears. Thisdialog is composed of three main sections: a plot

section, a Markov Chains section, and a spreadsheet section.

¥ertical (2) Markov Chains
Measured Data e E pr——r
Lag spacing: |'||:|— : | :
r ; e r /}z—’
Compute... | T A i
ax lag distance for plats:— [10.0 : :
— Markov Chains {:—ummmm i:"ﬂ;i_
= Edit the transition rates - LRSS E """
" Edit embedded trans. probabiliiies | |
™ Edit embedded trans. frequencies ﬂw o . E:, s E/—H_-___
¥ Edit maximum entropy factars == = = E =
"~ Fit curves to a discrete lag : : */__,.i : : \ﬁ%
Lagn;lz—ﬂ AR || B s (| Y S ||

[T e
Materil Piopottion | Lens Length M aterial Clear_Sand | Sand_w/_f... | St Clay
Clean_Sand | 0.09102 3.37704661... | Clean_Sand [3.3770466.. 1.0 10 1.0
Sand_w/fi.. |0.5044 §,75097909... | | Sand_w/f. (1.0 97509730 10 1.0
il 0.05324 3.a1270500.. | | Si 1.0 1.0 38127060, 1.0
Clay 0.3413 E.05292860. | | Clay 1.0 10 10 £.0529285.
<] |+

(] I Cancel | I

Figure GG Vertical Markov chain dialog.

All three sections enable the user to develop a 1-D Markov chain in the vertical direction.

B.3.1 Plot Section

The plot section (areain red) includes the array of curves, the Lag spacing edit
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field, the Compute button, and the Max lag distance for plots: edit field. The number of
plotsin the array produced correlates to the number of materials used in the simulation.
If N materials are used, an N by N array of plots will illustrate the transition probabilities
for each material with respect to every other material. Every plot islabeled with aname
and units and can be maximized with a command in the menu produced by right-clicking

on the curve in question (Figure HH).

Click Here or Press "Esc’ to Return

0 Clean_Sand -> Clean_Sand

08

08 -

0.7

06

/

05

04 4

transition probability

0.3

02+

Figure HH Maximized plot.

The curves are automatically regenerated anytime a change is made in the other sections

of the dialog.
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By default, the curves plot transition probabilities that correspond to an equal

probability of each material occurring asillustrated in Figure 1.

¥ertical (Z) Markov Chains
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. _ E E E e
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% Edit masirurn entropy factars - E— = E— = e = E—
[ [ [ [
£ Fit curves o e dissrete5g I I I (BRI
Trangition Fates:
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material_1 0.25 1.0 material 1 1.0 1.0 1.0 1.0
material_2 025 1.0 mateial 2 (1.0 1.0 1.0 1.0
material_3 025 1.0 matenial 3 (1.0 1.0 1.0 1.0
miaterial_4 0.25 1.0 material 4 1.0 1.0 1.0 1.0
al | 2

Previnusl Mext I Cancel |

Figurell Curveswith equal probability.

If boreholes exist in the model, the Compute button becomes undimmed. When the user
clicks the Compute button, the parameter files required for running GAMEAS are
generated and GAMEAS is executed. A separate window displays the details of the
GAMEAS run, which allows the user to monitor the output from the GAMEAS

simulation as shown in Figure JJ.
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Elapzed Time: O hrs O min 4 gec

GAMEAE =tarted —
SAMYIN Wersion: $dkwE

dats file: CinwindowswTEMPWwdata. eas

columns for XaT-I: 1 2 2
number of wariables: Yy

columns: Yy 5 b
trimming limit=s: -1.000000 2.000000

output file:
CingindowshTEMPYLwdatatpz . 2eas

number of lags: 1082

lag distance: 0.2000000

lag tolerance: 0O.1s500000

number of directions: 1

azZma atola bandwh: O.0000000E+00 q0.00000 0O.2500000
dip. dtol. bandwd: —80. 00000 22 . 50000 0O.2500000
number of wariograms: 1k

tailahead.type: 1 1 11
tail-head-type: L 2 1L

SAMEAE terminated
tailahead.type: 1 2 11

Figure JJ GAMEAS executable inside GMS interface.

When GAMEAS completes a successful run, the results, including the material
proportions and transition probability curves from the measured data, are read into the
corresponding datafields in the dialog as illustrated in Figure GG. Furthermore, the
transition rates which correspond to the slope of the transition probability curves when

h, =0 (see Chapter 3) are interpolated from the measured data curves. In addition to

running GAMEAS, the code parses through the borehole data and calcul ates the
embedded transition probabilities and frequencies as defined in Chapter 3. These values
are stored in arrays that correspond to options #2 and #3 in the Markov Chains section of

the dialog in Figure GG.

In addition to the curves generated from the measured data, a set of curvesis
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generated from the Markov chains as defined by the option selected in the Markov
Chains section. In Figure GG, the measured data curve is green, and the Markov chain
curveisblue. Hence, each plot contains two curves: a curve from the measured data and
acurve from the Markov chain definition. Only the Markov chain curveisused in later
calculations. The curve from the measured data plays a curve-fitting role. Generally, the
parameters in the dialog are changed until the Markov chain curve mimics the measured

curve asillustrated in Figure GG.

The Lag spacing determines how dense the curves are, and the Max lag distance
for plots determines the range of the curves. The curves always range from 0 to the Max
lag distance for plots horizontally, and they range from O to 1 vertically to honor

probability constraints.

B.3.2 Markov Chains Section

There are five alternate methods of generating Markov chainsin this section (area
in greenin Figure GG). Four of these five methods correspond to the theory described in
the Markov chain section of Ch. 3. Furthermore, these methods are in a radio-button
configuration to alow the user to conveniently change from one method to another. Each
of these five methods will be described. The first four options have previously been
described in the Markov Chain section of Chapter 3. The curves used to illustrate the
different methods in the following section were derived from borehole data extracted

from the Longhorn Army Ammunition Plant (LHAAP) in Eastern Texas.

The first option, Edit the transition rates, is exactly that. One can directly edit the
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array of transition rates that are listed in the Transition Rates section. The theory that
supports this option is described in the Markov chain section of Ch. 3. Thisoptionis
useful after selecting the Compute button and running GAMEASS because slopes can be
inferred from the measured data curves. GAMEASS outputs transition probability curves.

Transition rates used in this option

correspond to the slope of the transition probability curve at alag, h(¢) =0. When

reading the output from GAMEAS, the transition probability rates, r., ,, areinterpolated

k.1
as

Fip = 0575 1Ly, +0.29% 12, +0.04% 13, evvvroevrnssmnrnssnnsesssnens Eqt. B.1

whererl, r2, and r3 are the slopes defined by a straight line from the origin out to lagl,
lag2, and lag3 respectively. It will be remembered that the transition rate obeys Eqt.
3.11. Therefore, as the lag approaches zero, more weight should be given to the
corresponding slope. Hence, aweight of 0.57, 0.29, and 0.14 were assigned to rl, r2, and
r3 respectively. Once the slopes are computed for each entry in the matrix, the mean

lengths for each category are computed by

Figure KK illustrates the Vertical (z) Markov Chain dialog when option #1 is selected.
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Figure KK Vertical (Z) Markov Chain dialog with option #1 selected.

Regardless of which Markov Chain option is selected, the background row and column,
Sand_w/_fines, is dimmed because the values in this row and column are automatically
computed from the remaining entries by probability constraints described in the Markov
chain section of Ch. 3. In addition, with this option selected, the Lens Length column is
also dimmed because the lens lengths are automatically computed and updated from the
diagonal termsin the Transition Rates spreadsheet. The diagonal terms of the Transition
Rates spreadsheet must be negative to obey probability rules. With this data, this method
produces an accurate fit between the measured (green) and the Markov chain (blue)

curves at small lag spaces.
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The second option is Edit embedded tans. probabilities. Thisisamore intuitive
method of generating Markov chains and is conducive to sites with and without data. It
is conducive to sites with data because the embedded transition probabilities can be
determined from the borehole data. When asimulation isinitialized, if borehole data
exist default embedded transition probabilities are computed from the borehole data. If
borehole data do not exist, the embedded transition probabilities can be estimated with
some basic geologic knowledge including the average mean lengths of each material for
each direction and depositional trends. Figure LL illustrates the curves generated with

this method.

vertical (Z) Markov Chains Ed
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& Edit embedded trans. probabiities I ¥

|

Amrer rm. v Gl Jwrn m i i i T rmvan ) Ture e e vy

¢~ Edit embedded trans. frequencies i:-—mm

€ Edit masimum ertropy factars

£ Fit curves to a discrete lag i i
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Sand_w/_fi. | 05044 97O525171.. | Sand_w/f. |02368545.. 97952517.. 0.1215892. 0.6415562..
Sl 005324 Se1270500. | il 0.0875 0.5125 38127080, 0.4

Clay 0.3413 F.05292665.. | | Clay 0.2359550... 0.6179775.. 0.1460674.. £.0529286..
<] |+

0K I Cancel |

FigureLL Vertical (Z) Markov Chain dialog with option #2 sel ected.
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With this option selected, the diagonal terms are dimmed because these values are

derived from the values entered in the Lens Length column using Eqt. B.2. Adjusting the

proportions, lens lengths, or the off-diagonal terms in the Transition Rates spreadsheet

adtersthe curves.

The third option in the Markov Chains section is Edit embedded tans.

Frequencies (Figure MM).

Yertical {2) Markoy Chains
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Figure MM Vertical (Z) Markov Chain dialog with option #3 sel ected.

This option is similar to option #2, except embedded transition frequencies populate the

off-diagonal terms of the Transition Rates spreadsheet. Embedded transition frequencies

106




are also computed from borehole data when asimulation isinitialized if borehole data
exist. Once again, thisis an intuitive framework with geologic knowledge including

average mean lengths and depositional trends.

The fourth option is Edit maximum entropy factors (Figure NN).

Yertical (2) Markov Chains
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Tranzition Rates:
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<] | >

(] 4 I Cancel |

Figure NN Vertical (Z) Markov Chain dialog with option #4 selected.

While this option can be used with borehole data, it isideally it isideally suited for cases
without borehole data. With this option, the user edits the proportions for all but the
background material and the means lens lengths for all materials. The lens lengths are

used to populate the diagonal terms of the Transition Rates spreadsheet using Eqt. B.2,
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and the maximum entropy factors fill the off-diagonal terms of the spreadsheet. As
described in Chapter 3, the maximum entropy factors represent the ratio of the transition
rate to the maximum entropy transition rate. A maximum entropy factor of 1.0 represents
maximum disorder in depositional tendencies. A rate greater than 1.0 indicates that the
two categories tend to occur next to each other. A factor less than unity would infer the
opposite. Thisisan intuitive method of generating Markov chains and is conducive to all
types of sites. This method enables logical incorporation of anisotropy into the model

with the maximum entropy factors.

The fifth option, Fit curvesto a discretelag, is only undimmed if atransition
probability curve from measured data exists in memory. When this option is selected, the
Lag # edit field is undimmed and the user enters the discrete lag the curves will befit to

(Figure OO).
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Figure OO Vertical (Z) Markov Chain dialog with option #5 selected.

This option produces Markov chains that are computed from the measured transition rates
produced by GAMEAS. GAMEAS computes a set of transition probabilities at each lag
specified by the user. This option computes an array of transition rates from the slope of
the curves generated by GAMEAS (green). The transition rates correlate to the shape of
the curve from the origin to the lag # specified by the user in the Lag # edit field in Figure
OO0. Therefore, the cells of all the spreadsheetsin the dialog are dimmed because the
values are inherited from the measured curves (green). The values in the spreadsheets

change depending on the lag # entered.
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B.3.3 Spreadsheet Section

This section, areain blue in Figure GG, includes two separate spreadsheets:
Transition Rates and Proportions & Mean Lengths spreadsheets. The Transition Rates
spreadsheet contains the rate entries that correspond to the selected option in the Markov
Chains section. The Proportions column holds the proportions for each material. The
Mean Lengths column contains the average mean length in the vertical direction for each
material.

B.4 Strike(X) Markov Chains

Once the vertica Markov chains have been defined, the user is then presented
with the Strike (X) Markov Chains dialog. This dialog has the same setup as the vertical

dialog (Figure PP).
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Figure PP Strike/Dip Markov chain dialog.

There are three minor differences between this dialog and the vertical dialog. The first
difference isin the Markov Chains section. The option, Lens width ratios, replaces the
Fit curvesto a discrete lag option. The Fit curvesto a discrete lag option is not
applicable because horizontal measured transition probability curves do not exist due to
lack of datain the horizontal direction. The Lens width ratios option is the default option
and should be used in most cases. This option allows users to apply the transition data
entered in the vertical direction to the horizontal direction. The transition rate matrix is
automatically populated based on the Walther’s Law assumption and by using the three-

step process described in the Multidimensional Markov Chains Section of Chapter 3. The
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proportion data are directly inherited from the vertical data. In addition, rather than
entering the mean lengths, the user enters aratio corresponding to the ratio of the lens
length in the x direction to the lens length in the z direction. For example, if the lens
length for material A is5 feet in the z direction and the user enters 10.0 for the ratio, then
the lens length in the x direction would be 50 feet. Due to the lack of measured datain
the horizontal direction, another minor change is that each plot in the Plot Section
contains only one curve: the Markov chain curve. The Lens Width Ratios option is
particularly useful because the only required input is lens length ratios for the non-
background materials. The remaining data are all inherited from the vertical data

B.5 Dip (Y)Markov Chains

The dip dialog has an identical appearance and functionality as the strike dialog.

B.6 Running TSIM

Once the general options and the 1-D Markov chainsin al three primary
directions have been defined, a simulation can be generated. Selecting the Run TSM

command in the T-PROGS menu in Figure BB initializes this process.
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Figure QQ General options for simulation generation.

The command produces the dialog shown in Figure QQ. This dialog contains some
genera options including the number of simulations created, maximum number of
guenching iterations, and the type of output desired. Either material sets or HUF arrays
can be generated. A material set is an array of material ids that correspond to each cell in
the grid, and each material has hydraulic parameters associated with it. HUF arrays are
arrays of material ids that can be independent of the number of grid layersin the grid.
This option is only undimmed if MODFLOW isinitialized. In Figure QQ, MODFLOW
has not been initialized so this option as well asthe Number of layers. edit field is

dimmed.

When the OK button is selected on the TSIM Options dialog, the parameter files
for MCMOD are generated and the executable is launched in the same way as the

GAMEAS executable (Figure RR).
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Figure RR MCMOD executable inside GM S interface.

After asuccessful completion, TSIM is automatically executed. After its successful
completion the output of spatial variability is read into the appropriate material set arrays
or HUF arrays as prescribed in the TSM Options dialog. Both for the MCMOD and
TSIM executable, the time remaining for completion is estimated and displayed in the top
right-hand dialog asillustrated in Figure RR. Furthermore, prior to completion, one can

exit the program by selecting the Abort button in the bottom of the dialog displayed in

Figure SS.
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Figure SS TSIM executable inside GM S interface.

Only one T-PROGS simulation can exist at once. The data associated withaT-
PROGS simulation is written out and read in with the GMS project data. Theinterfaceis
user-friendly with sufficient warning and HEL P messages throughout the interface.

B.7 Post-Processing

The indicator arrays generated by T-PROGS are read into material sets or HUF
arrays as outlined in Chapters4 and 5. If asimulation of N material setsis generated, al
N material sets are organized into a Material Set folder stored in the 3-D grid module

inside a data tree window asillustrated in Figure TT.
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Figure TT Datatree used to organize HUF and Material sets.

The simulation folders can be renamed, moved, or deleted by the user by right-clicking
on theitem or by simply dragging the folder. Furthermore, not only can multiple
realizations be generated, but also multiple sets of realizations can be generated, saved,
organized, and manipulated efficiently and smply. The different indicator arrays or
material sets are applied to the grid by simply selecting the corresponding item in the data
tree and the grid display is automatically updated. The active material set or data set that

is currently incorporated into the grid is marked with a bolded name and icon. In

Figure UU, the grid material identification array is populated with data from the data
from the active material set, Material Set 2 2. Another material set simulation exists as

well as HUF data set simulations.
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Figure UU Grid populated with datafrom Material Set 2 2.

HUF arrays are stored and organized in asimilar way. Except the HUF data are

al stored in aHUF Data folder.
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